
LLaMA-Adapter: Efficient Fine-tuning of Language Models
with Zero-init Attention

Renrui Zhang∗1,2, Jiaming Han∗1, Aojun Zhou2, Xiangfei Hu1, Shilin Yan1

Pan Lu3, Hongsheng Li2, Peng Gao1, Yu Qiao1

1Shanghai Artificial Intelligence Laboratory 2CUHK MMLab
3University of California, Los Angeles

{zhangrenrui, hanjiaming, gaopeng, qiaoyu}@pjlab.org.cn

Abstract

We present LLaMA-Adapter, a lightweight adaption
method to efficiently fine-tune LLaMA into an instruction-
following model. Using 52K self-instruct demonstrations,
LLaMA-Adapter only introduces 1.2M learnable parame-
ters upon the frozen LLaMA 7B model, and costs less than
one hour for fine-tuning on 8 A100 GPUs. Specifically, we
adopt a set of learnable adaption prompts, and prepend
them to the input text tokens at higher transformer layers.
Then, a zero-init attention mechanism with zero gating is
proposed, which adaptively injects the new instructional
cues into LLaMA, while effectively preserves its pre-trained
knowledge. With efficient training, LLaMA-Adapter gen-
erates high-quality responses, comparable to Alpaca with
fully fine-tuned 7B parameters. Furthermore, our approach
can be simply extended to multi-modal input, e.g., images,
for image-conditioned LLaMA, which achieves superior
reasoning capacity on ScienceQA. We release our code at
https://github.com/ZrrSkywalker/LLaMA-
Adapter.

1. Introduction
Large-scale Language Models (LLMs) [6, 7, 35, 36, 54]

have stimulated widespread attention in both academia and
industry. Driven by massive corpora and advanced hard-
ware, LLMs exhibit remarkable understanding and gen-
erative ability, propelling language tasks into a higher
level. Recently, significant progress has been made on
instruction-following models, e.g, ChatGPT1 and GPT-3.5
(text-davinci-003) [5]. Following instructions or commands
in natural language, they can generate professional and con-
textual responses in a conversational way. However, the fur-

∗ Equal contribution
1https://chat.openai.com

LLaMA-Adapter

Instruct

1.2M Parameters

LLaMA

Response

7B/13B
Parameters 1 Hour Fine-tuning

Fine-tuneFrozenThe	president	of	Mexico in	2019?

Andrés	Manuel	López	Obrador	… Multi-modal Instruct

Plug with Expertise

Figure 1. Characteristics of LLaMA-Adapter. Our lightweight
adaption method tunes LLaMA into an instruction-following
model with only 1.2M learnable parameters and one-hour train-
ing. LLaMA-Adapter is plug-and-play for different downstream
expertise and can be generalized to multi-modal reasoning.

ther prevalence of instruction-following models is largely
impeded by the closed-source restriction and high develop-
ment costs.

To alleviate this, Stanford Alpaca [40] proposes to
fine-tune an LLM, i.e., LLaMA [41] into an instruction-
following model, which is affordable and replicable. Start-
ing from 175 human-written instruction-output pairs [47],
Alpaca leverages GPT-3.5 to expand the training data to
52K in a self-instruct manner. Supervised by this, Alpaca
fine-tunes the entire 7B parameters in LLaMA, producing
an exceptional model that performs similarly to GPT-3.5.
Despite Alpaca’s effectiveness, a complete fine-tuning of
large-scale LLaMA is still time-consuming, computation-

https://github.com/ZrrSkywalker/LLaMA-Adapter
https://github.com/ZrrSkywalker/LLaMA-Adapter
https://chat.openai.com

intensive, and cumbersome to transfer to different down-
stream scenarios.

In this paper, we introduce LLaMA-Adapter, an effi-
cient fine-tuning method that adapts LLaMA into a well-
performed instruction-following model. We also utilize
the 52K instruction-output data for training purposes, but
demonstrate superior resource efficiency to Alpaca. Specif-
ically, in LLaMA’s higher transformer layers, we append a
set of learnable adaption prompts as prefix to the input in-
struction tokens. These prompts learn to adaptively inject
new instructions (conditions) into LLaMA. To avoid noise
from adaption prompts at the early training stage, we mod-
ify the vanilla attention mechanisms at inserted layers to
be zero-init attention, with a learnable gating factor. Ini-
tialized by zero vectors, the gating can firstly preserve the
original knowledge in LLaMA, and progressively incorpo-
rate instructional signals during training. This contributes
to stable learning during the fine-tuning process and better
instruction-following capacity of the final model.

Overall, our LLaMA-Adapter exhibits four main charac-
teristics, as shown in Figure 1.

• 1.2M Parameters. Instead of updating the full 7B pa-
rameters, we freeze the pre-trained LLaMA and only
learn the adaption prompts with 1.2M parameters on
top. This, however, reveals comparable instruction-
following proficiency with the 7B Alpaca.

• One-hour Fine-tuning. Thanks to lightweight pa-
rameters and our zero-init gating, the convergence of
LLaMA-Adapter costs less than one hour on 8 A100
GPUs, three times faster than Alpaca.

• Plug with Expertise. For different scenarios, it is
flexible to insert their respective adapters and endow
LLaMA with different expert knowledge. Thus, it suf-
fices to store a 1.2M adapter within each context, other
than a complete copy of the 7B model.

• Multi-modal Condition. Besides textual instruction,
LLaMA-Adapter can be extended to image input for
multi-modal reasoning. By simply adding images
tokens into adaption prompts, LLaMA-Adapter per-
forms competitively on the ScienceQA benchmark.

2. Related Work
2.1. Instruction-Following Language Models

The subfield of Language Models focusing on
instruction-following models is crucial for generat-
ing responses based on natural language commands.
Instruction-following methods enhance pre-trained models
by fine-tuning them using high-quality input-output tuples
of task instructions and ground truth outputs. This fine-
tuning helps the model better understand user intentions

and follow instructions more accurately. Instruction-
following methods have been extensively researched
in language models [3, 32, 48, 50] and multi-modality
domains [29, 38]. Among those methods, FLAN [50]
introduces an instruction tuning method that outperforms
non-tuned LLMs in unseen tasks. PromptSource [3] pro-
vides development environment and repository that offers a
web-based GUI for creating and managing natural language
prompts for zero-shot or gradient-based few-shot learning.
SUP-NATINST [48] establishes a large benchmark of
1,616 diverse NLP tasks and uses multi-task training on the
T5 model, demonstrates strong generalization capabilities
on unseen tasks. InstructGPT [32] demonstrates significant
performance improvements and may be integrated into
closed-source models like GPT-3.5 and GPT-4 [31]. The
open-source Stanford-Alpaca [40] approach fine-tunes all
parameters of LLMs in an end-to-end manner. However,
this full-model fine-tuning can be computationally intensive
and challenging to scale to larger pre-trained language
models. In contrast, our paper aims to fine-tune lightweight
adapters on top of the frozen large pre-trained models, e.g.,
LLaMA, rather than performing end-to-end fine-tuning
of all parameters. This approach reduces computational
demands and facilitates the efficient adaptation of LLMs
to instruction-following tasks while maintaining high
performance.

2.2. Large Vision-Language Models

Over the past decade, we have witnessed a shift in vision-
language research from task-specific models [12,14,37,43,
51] to large foundation models [1, 4, 20, 34, 44–46, 49]. Af-
ter pre-training on large-scale image-text data, these large
vision-language models can quickly adapt to a set of down-
stream tasks. A line of works [34, 45, 49] train both visual
and textual encoders from scratch, leading to a high com-
putation cost. Recently, another line of works [1,20,44,53]
adopt pre-trained unimodal models as initialization and
only train the newly introduced parameters. Our work be-
longs to the later one. LiT [53] utilizes pre-trained im-
age encoder to speed up CLIP [34] training. Frozen [42]
fine-tunes an image encoder to transform visual tokens into
LLM’s soft prompts. Similarly, CLIPCap [30] proposes a
mapping network to connect the pre-trained image encoder
with LLMs. Flamingo [1] inserts several cross-attention
layers to inject visual knowledge into LLMs. BLIP2 [20]
connects pre-trained image encoders and LLMs with a Q-
Former. To summary, these methods use mapping networks
or cross-attention layers to connect vision and languages.
Differently, our method only introduces a few learnable pa-
rameters and progressively injects visual features into pre-
trained LLMs with a simple but efficient zero-init attention.

2.3. Parameter-Efficient Fine-Tuning

Parameter-Efficient Fine-Tuning (PEFT) [39] methods
facilitate efficient adaptation of Large-scale Language Mod-
els (LLMs) without the need to update all model param-
eters, thereby reducing the cost and improving the effi-
ciency of fine-tuning large models. Various PEFT tech-
niques include Prefix Tuning [23], Low-Rank adaptation
(LoRA) [11] and the insertion of adapter layers in pre-
trained large language models [10, 25, 33]. Prefix Tun-
ing [23] appends a collection of prefixes to autoregressive
language models, or alternatively, incorporates prefixes for
both encoder and decoder components, similar methods
proposed in [19]. LoRA [11] introduces trainable rank de-
composition matrices into each layer [13]. Adapter [10] in-
volves inserting lightweight modules into each layer of pre-
trained models, with only the adapters being trained during
fine-tuning. This approach has been extended across nu-
merous domains [33].

In this paper, we fine-tune pre-trained language mod-
els for instruction-following capabilities (response to in-
structs), and are distinct from existing ones in two aspects.

• Zero-init Attention. Prevalent PEFT methods might
potentially disturb the pre-trained linguistic knowl-
edge by directly inserting randomly initialized mod-
ules. This leads to unstable fine-tuning with large loss
value at early training stages. LLaMA-Adapter adopts
a zero-init attention with gating to mitigate this.

• Unified Multi-modal Tuning. Previous PEFT meth-
ods are normally developed to address specific modal-
ities, such as language, image, and audio. In contrast,
LLaMA-Adapter can handle both language and multi-
modality fine-tuning with a unified manner, demon-
strating superior generalization ability.

3. LLaMA-Adapter

In Section 3.1, we first introduce how to insert the learn-
able adaption prompts into LLaMA’s transformer. Then in
Section 3.2, we present the details of zero attention mecha-
nisms with zero-init gating. Finally in Section 3.3, we gen-
eralize LLaMA-Adapter for multi-modal reasoning.

3.1. Learnable Adaption Prompts

Given 52K instruction-to-output data [47] and a pre-
trained LLaMA [41] with an N -layer transformer, we
adopt a set of learnable adaption prompts for instruction-
following fine-tuning, which are denoted as {Pl}Ll=1, where
Pl ∈ RK×C with K denoting the prompt length for each
layer, and C equaling the feature dimension of LLaMA’s
transformer. Note that we insert the prompts into the top-
most L layers of the transformer (L ≤ N). This can better

Zero-init Attention

Adaption	
Prompt

Details	of		LLaMA-Adapter

Softmax

Softmax

Softmax

Vanilla Attention

…

…

Transformer	Layers x N-L

Transformer	Layers x L

++

Word	
Tokens

Adapter

Forw
ard

Backw
ard

Scalar-multiply+
+ Concatenate

Fine-tune

Frozen

Zero
Gating

Figure 2. Details of LLaMA-Adapter. We insert lightweight
adapters with learnable prompts into L out of N transformer layers
of LLaMA. Aided by zero-init attention and gating mechanisms,
the adaption prompt progressively learns new instructional cues,
without disturbing the original pre-trained knowledge.

tune the language representations with higher-level seman-
tics.

Taking the l-th inserted layer as an example, we denote
the M -length word tokens as Tl ∈ RM×C . Then, the adap-
tion prompt is concatenated with Tl along the token dimen-
sion as prefix, formulated as

[Pl; Tl] ∈ R(K+M)×C . (1)

In this way, the instruction knowledge learned within Pl can
effectively guide Tl to generate contextual responses.

s

3.2. Zero-init Attention

If the adaption prompts are randomly initialized, they
might bring disturbance to the word tokens at the beginning
of training, which harms the fine-tuning stability and effec-
tiveness. Considering this, we modify the vanilla attention
mechanisms at the last L transformer layers to be zero-init
attention, as shown in Figure 2. Suppose the model is gen-
erating the (M +1)-th word on top of [Pl; Tl] at the l-th in-
serted layer, we denote the corresponding (M +1)-th word
token as tl ∈ R1×C . In the attention mechanism, several

Zero-init Attention

Multi-modal
Adaption	
Prompt

Multi-modal Reasoning	of		LLaMA-Adapter

…

Transformer	Layers x L-1

Adapter +

Zero-init Attention

…

Adapter +
Visual
Encoder

Global

Add

Add

Multi-scale	
Features

Ø Visual	Context:

Vanilla Attention

Transformer	Layers x N-L

+
Global

Global

+

Projection

Ø Question: Which	force	from	the	
baby’s	hand	opens	the	door?

Ø Options: (A)	pull		(B)	push

A	baby	wants	to	
know	what	is	inside.

Ø Textual
Context:

Ø Answer: The	answer	is	(A).

Fine-tune

Frozen
+ Concatenate

Frozen

Figure 3. Multi-modal Reasoning of LLaMA-Adapter. On the ScienceQA benchmark [26], LLaMA-Adapter is extended to multi-modal
variant for image-conditioned question answering. Given an image as the visual context, we aggregate its multi-scale features as the
image token, and element-wisely add it onto the adaption prompts of L inserted layers. In this way, LLaMA-Adapter achieves competitive
reasoning capability based on multi-modal conditions.

linear projection layers are first applied to transforming the
input tokens into queries, keys, and values as

Ql = Linearq(tl), (2)
Kl = Lineark([Pl; Tl; tl]), (3)
Vl = Linearv([Pl; Tl; tl]). (4)

Then, the attention scores before the softmax function are
calculated as

Sl = QlK
T
l /

√
C ∈ R1×(K+M+1), (5)

which records the feature similarities between tl and all K+
M + 1 tokens. Meanwhile, Sl can be reformulated by two
components as

Sl = [SK
l ; SM+1

l]T , (6)

where SK
l ∈ RK×1 and SM+1

l ∈ R(M+1)×1 denote the
attention scores of K adaption prompts and M + 1 word
tokens, respectively. The former SK

l represents how much
information the learnable prompt contributes to tl, which
probably causes disturbance in the early training stage.

To this end, we adopt a learnable gating factor, denoted
as gl, to adaptively control the importance of SK

l in the at-
tention. Initialized by zero, gl can firstly eliminate the in-
fluence of under-fitted prompts, and then increase its mag-
nitude for providing more instruction semantics to LLaMA.
Therefore, we independently apply the softmax functions to
the two components in Equation (6), and multiply the first
term by gl, formulated as

Sg
l = [Softmax(SK

l) · gl; Softmax(SM+1
l)]T . (7)

The separate softmax functions ensure the second term to
be irrelevant to our adaption prompts. When gl is close to
zero, it can convey the originally pre-trained knowledge of
LLaMA to token tl for creditable generation.

Finally, we calculate the output of the attention layer
with a linear projection layer as

tol = Linearo(S
g
l Vl) ∈ R1×C . (8)

With our proposed zero-init attention, the adaption prompts
progressively inject the newly acquired instructional knowl-
edge into LLaMA, while effectively incorporates its pre-
trained ability to provide high-quality responses.

3.3. Multi-modal Reasoning

Not limited to textual instructions, LLaMA-Adapter is
capable of answering a question based on input of other
modalities, which augments the language model with rich
cross-modal information. As shown in Figure 3, we take
the ScienceQA benchmark [26] as examples. Given visual
and textual contexts, along with the corresponding ques-
tion and options, the model is required to conduct multi-
modal reasoning to give the correct answer.

For an image as the visual context, we first leverage a
pre-trained visual encoder, e.g, CLIP [34], to extract its
multi-scale global features, denoted as {Im}Mm=1, where
Im ∈ R1×Cm and M denotes the scale number. Then, we
concatenate the M -scale features along the channel dimen-
sion and apply a learnable linear projection layer on top,
formulated as

Ip = Projection
(
Concat

(
{Im}Mm=1

))
, (9)

where Ip ∈ R1×C and is regarded as the overall image
token with the same feature dimension as our adaption
prompts. After this, we repeat Ip for K times, and element-
wisely add it onto the K-length adaption prompt at L in-
serted transformer layers. For the l-th layer, we denote the
acquired multi-modal prompt as

Pl +Repeat(Ip) ∈ RK×C , (10)

which is incorporated with visual information from the
given image context. In this way, LLaMA is fine-tuned to
generate responses conditioned on vision-language inputs,
and can achieve more challenging question answering with
multi-modal understanding.

Shared across modalities, LLaMA-Adapter with addi-
tional input condition can also be generalized to video and
audio. Using the pre-trained modal-specific encoders, we
can integrate instructional signals of different modalities to
the adaption prompts, which maximizes the generative and
comprehension capabilities of LLaMA. We lease this as a
future work.

4. Instruction-Following Evaluation
In this section, we evaluate the instruction-following ca-

pacity of LLaMA-Adapter by responding to instructions.

4.1. Experimental Details

Training Data. We use 52K instruction-following data
from Stanford Alphaca [40] for training, denoted as
Alphaca-52K. Each sample in Alphaca-52K contains the
following fields: {instruction} is the description of a task,
{input} is the context for the task, and {output} is the an-
swer generated by GPT-3.5 (text-davinci-003) [5]. Note that
around 40% of the examples include an input.

Implementation Details. We build LLaMa-Adapter
based on the original LLaMa codebase2 with minor modi-
fications. We train LLaMa-Adapter on 8 A100 GPUs for 5
epochs. The warmup epochs, batch size, learning rate and
weight decay are set to 2, 64, 9e-3 and 0.02, respectively.
In general, we utilize the pre-trained LLaMA model with
7B parameters and N = 32 transformer layers as the
base model. We set the prompt length K = 10 and insert
prompts into the last L = 30 layers by default. Other
variants of LLaMA-Adapter with different inserted layers
are also released in our code. In the generation stage, we
adopt top-p sampling as the default decoding method with
a temperature 0.1 and a top-p = 0.75.

4.2. Performance

We compare LLaMA-Adapter with existing representa-
tive instruction-following method, Alphaca [40], in Table 1,

2https://github.com/facebookresearch/llama

and present the full comparison with Alpaca-LoRA [11]
and GPT-3 [5] in Appendix A. As there still lacks of rigor-
ous metrics for evaluation, we simply show some response
examples for comparison. As shown, by only fine-tuning
1.2M parameters, our approach generates reasonable re-
sponses comparable to the fully fine-tuned Alpaca or the
large-scale GPT-3. This fully demonstrates the effective-
ness of our adapters with zero-init attention.

In Appendix B, we also compare LLaMA-Adapter with
LLaMA-I, i.e., LLaMA-65B fine-tuned on large scale in-
structional data. As shown, LLaMA-Adapter is capa-
ble of various non-trivial tasks, such as dialog genera-
tion, code generation and question answering etc. We be-
lieve LLaMa-Adapter can be further enhanced by combin-
ing larger LLaMA models, enlarging the amount of training
data, and scaling up learnable parameters.

4.3. Efficiency

In Table 3, we compare the learnable parameters, storage
space, and training time of different instruction-following
methods. As a lightweight plug-and-play module, LLaMA-
Adapter enjoys superior training efficiency with only 1.2M
parameters, 4.9M storage, and one-hour training. This en-
ables us to fine-tune large-scale language models (LLaMA)
on cheap and mobile devices. LLaMA-Adapter’s efficiency
advantages can be further revealed by multi-node training,
since only the gradients of 1.2M parameters are transferred
among nodes, other than Alpaca’s 7B.

5. Multi-modal Evaluation
In this section, we illustrate the multi-modal reasoning

capability of LLaMA-Adapter on the ScienceQA bench-
mark [26], and conduct ablation studies to verify the effec-
tiveness of our designs.

5.1. Experimental Details

Training Data. We train the multi-modal LLaMA-
Adapter on ScienceQA [26], a large-scale multi-modal and
multi-choice science question dataset collected from a wide
range of domains3. Figure 4 gives two examples in Sci-
enceQA. Each example normally contains a visual context,
a textual context, a question, multiple options, and an an-
swer. We omit the lecture and explanation for simplicity.
The model is required to output the correct answer based on
the multi-modal context and choices. The official question
answering accuracy is adopted as the evaluation metric.

Implementation Details. We organize the textual input
of LLaMA with one sentence, in an order of question, tex-
tual context, and options. For the visual context, we adopt
the pre-trained CLIP [34] as the visual encoder to extract

3https://scienceqa.github.io/explore

https://github.com/facebookresearch/llama
https://scienceqa.github.io/explore

Instruction: Tell me about alpacas.
LLaMA-Adapter: Alpacas are members of the camelid family and are native to the Andes Mountains of South America. They are
typically found in herds of 10-20 animals and are known for their gentle nature and their ability to thrive in harsh climates. Alpacas
are typically white or grey in color and have long, silky coats. They are also known for their ability to produce high-quality wool,
which is used in the production of clothing and other products.
Alphaca: Alpacas are small, fluffy animals related to camels and llamas. They are native to Peru and Bolivia, and were first
domesticated around 5,000 years ago. They are kept mainly for their fine, soft fleece, which is used to make knitwear and other
garments. Alpacas are herd animals and live in small family groups, led by an older male. They are highly social animals and can
form strong bonds with their owners.

Instruction: Tell me about the president of Mexico in 2019.
LLaMA-Adapter: The president of Mexico in 2019 was Andrés Manuel López Obrador, who took office on December 1st, 2018.
He is a member of the left-wing party Morena and is known for his populist policies. He has focused on tackling corruption, reducing
poverty, and improving the country’s infrastructure. He has also been a vocal critic of the United States’ immigration policies.
Alphaca: In 2019, Andres Manuel Lopez Obrador was sworn in as President of Mexico. He is the country’s 58th president and
the first from the left-wing Morena party. He was elected in 2018 on a promise to combat corruption and reduce poverty and has
faced criticism for his handling of the economy, crime and the country’s relationship with the United States. He is also known for his
ambitious social welfare programs and has been praised for raising the minimum wage and providing aid to low-income families. He
is seen as a champion of democracy and human rights in Mexico.

Instruction: List all Canadian provinces in alphabetical order.
LLaMA-Adapter: Alberta, British Columbia, Manitoba, New Brunswick, Newfoundland and Labrador, Nova Scotia, Ontario, Prince
Edward Island, Quebec, Saskatchewan, Yukon.
Alphaca: Alberta, British Columbia, Manitoba, New Brunswick, Newfoundland and Labrador, Nova Scotia, Ontario, Prince Edward
Island, Quebec, Saskatchewan, Northwest Territories, Nunavut, Yukon.

Instruction: Tell me five words that rhyme with ’shock’.
LLaMA-Adapter: Flock, rock, lock, cook, and stock.
Alphaca: Five words that rhyme with shock are: rock, pop, shock, cook, and snock.

Instruction: Translate the sentence ’I have no mouth but I must scream’ into Spanish.
LLaMA-Adapter: No tengo boca pero tengo que gritar.
Alphaca: No tengo boca, pero debo gritar.

Instruction: Write a Python program that prints the first 10 Fibonacci numbers.
LLaMA-Adapter:

def fibonacci():
a = 0
b = 1
for i in range(10):

a, b = b, a + b
print(a, b)

print("Fibonacci numbers: ", a, b)

fibonacci()

Alphaca:

numbers = [0, 1]

for i in range(2, 11):
numbers.append(numbers[i-2] + numbers[i-1])

print(numbers)
Output: [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

Table 1. Instruction-following Comparison between LLaMA-Adapter and Alpaca [40].

Model
Tuned
Params Avg NAT SOC LAN TXT IMG NO G1-6 G7-12

Random Choice [26] - 39.83 40.28 46.13 29.25 47.45 40.08 33.66 39.35 40.67
Human [26] - 88.40 90.23 84.97 87.48 89.60 87.50 88.10 91.59 82.42

MCAN [52] 95M 54.54 56.08 46.23 58.09 59.43 51.17 55.40 51.65 59.72
Top-Down [2] 70M 59.02 59.50 54.33 61.82 62.90 54.88 59.79 57.27 62.16
BAN [16] 112M 59.37 60.88 46.57 66.64 62.61 52.60 65.51 56.83 63.94
DFAF [8] 74M 60.72 64.03 48.82 63.55 65.88 54.49 64.11 57.12 67.17
ViLT [17] 113M 61.14 60.48 63.89 60.27 63.20 61.38 57.00 60.72 61.90
Patch-TRM [27] 90M 61.42 65.19 46.79 65.55 66.96 55.28 64.95 58.04 67.50
VisualBERT [21, 22] 111M 61.87 59.33 69.18 61.18 62.71 62.17 58.54 62.96 59.92
UnifiedQA [15] 223M 70.12 68.16 69.18 74.91 63.78 61.38 77.84 72.98 65.00
UnifiedQA (CoT) 223M 74.11 71.00 76.04 78.91 66.42 66.53 81.81 77.06 68.82
GPT-3 [5] 0M 74.04 75.04 66.59 78.00 74.24 65.74 79.58 76.36 69.87
GPT-3 (CoT) 0M 75.17 75.44 70.87 78.09 74.68 67.43 79.93 78.23 69.68
MM-COTT [55] 223M 70.53 71.09 70.75 69.18 71.16 65.84 71.57 71.00 69.68
MM-COT [55] 223M 84.91 87.52 77.17 85.82 87.88 82.90 86.83 84.65 85.37

LLaMA-AdapterT 1.2M 78.31 79.00 73.79 80.55 78.30 70.35 83.14 79.77 75.68
LLaMA-Adapter 1.8M 85.19 84.37 88.30 84.36 83.72 80.32 86.90 85.83 84.05

Table 2. Question Answering Accuracy (%) on ScienceQA [26] test set. We report the accuracy of different question classes, including
natural science, social science, language science, text context, image context, no context, grades 1-6, and grades 7-12. GPT-3 [] of 175B
parameters conducts zero-shot answering. LLaMA-AdapterT and MM-COTT denote their single-modal variants with text-only input.

Model
Tuned
Params

Storage
Space

Training
Time

Alpaca [40] 7B 13G 3 hours
Alpaca-LoRA [11] 4.2M 16.8M -
LLaMA-Adapter 1.2M 4.7M 1 hour

Table 3. Comparison of Efficiency. The training time is tested on
8 A100 GPUs.

its multi-scale and global feature. We utilize simple MLPs
as the projection network before adding the image tokens to
the adaption prompts. Since the pre-trained visual encoder
is strong enough, we do not use the captioning data in Sci-
enceQA. In the generation stage, we adopt greedy search as
the decoding method. We keep other settings the same as
single-modal LLaMA-Adapter if not specified.

5.2. Performance

In Table 2, we compare LLaMA-Adapter with popular
VQA methods [2, 8, 16, 17, 21, 22, 27, 52] and language
models [5, 15, 55]. As shown, our single-modal variant
(‘LLaMA-AdapterT ’) attains 78.31% accuracy with 1.2M
parameters. By further injecting visual conditions with a
0.6M projection layer, our multi-modal variant (‘LLaMA-
Adapter’) is boosted by +6.88% answering accuracy. Tra-
ditional VQA methods are required to train the entire net-

work with considerable resource budget, while LLaMA-
Adapter only fine-tunes less than 2M parameters in a short
time. Compared to GPT-3, though conducting zero-shot
answering without fine-tuning, GPT-3 contains 175B total
parameters, much larger than our 7B LLaMA. Also, as a
language model, GPT-3 can not leverage any additional vi-
sual information. In contrast, LLaMA-Adapter can be eas-
ily switched into multi-modal variant, and achieves +10%
higher accuracy. Besides, we notice that MM-CoT [55] is
on par with our approach, but it relies on the complex two-
stage inference. We believe our LLaMA-Adapter can also
be boosted and leave the exploration of chain-of-thought for
future research.

5.3. Ablation Study

Insertion Layers. We first investigate the number of
transformer layers to be inserted. As shown in Table 4, in-
creasing the inserted layers leads to a significant improve-
ment in question answering accuracy, e.g., +17.41% from
10 to 30, and +10.49% from 20 to 30. It indicates that more
adaption prompts can provide stronger task-specific guid-
ance to the pre-trained LLaMA. This encourages us to in-
sert adaption prompts into more transformer layers for the
larger LLaMA model 65B parameters in the future.

Zero-init Attention. Our proposed zero-init attention in
LLaMA-Adapter is essential for the early-stage training sta-

Question: Select the fish below.
Context: Fish live underwater. They have fins, not limbs. Fish are cold-blooded. The body temperature of cold-
blooded animals depends on their environment. A Banggai cardinalfish is an example of a fish.
Choices: (A) green moray eel (B) rabbit (C) woodpecker (D) bald eagle
Answer: The answer is (A)

Question: Think about the magnetic force between the magnets in each pair. Which of the following statements is true?
Context: The images below show two pairs of magnets. The magnets in different pairs do not affect each other.
All the magnets shown are made of the same material.
Choices:
(A) The magnitude of the magnetic force is the same in both pairs.
(B) The magnitude of the magnetic force is greater in Pair 1.
(C) The magnitude of the magnetic force is greater in Pair 2.
Answer: The answer is (C)

Figure 4. Multi-modal Reasoning on ScienceQA [26] by LLaMA-Adapter.

Layers Params Val Acc (%)

10 0.97 55.95
20 1.37 73.36
30 1.79 83.85

Table 4. Ablation on Inserted Layers.

bility and final generation capacity. As shown in Table 5, it
contributes to a significant +43.27% performance gain in
SciceneQA. In contrast, the randomly initialized baseline
only achieves 40.77% accuracy, nearly the same as ‘Ran-
dom Choice’ (see Table 2’s first row). This comparison
demonstrates the decisive role of zero-init attention in our
approach. In Figure 5, we plot the loss curves with and
without the zero-init attention, where the ‘zero-init atten-
tion’ converges faster and reaches lower loss bounds than
‘rand-init attention’.

Robustness to Over-fitting. Since the data for fine-tuning
is normally much smaller-scale than that for pre-training,
researchers have to carefully tune a set of hyperparameters
to avoid over-fitting. In Table 6, we show our LLaMA-
Adapter is robust to the over-fitting issue. Similar to the
conclusion in [32], even if our model has over-fitted the
fine-tuning data, e.g., the validation loss marginally varying
from 0.136 (15 epochs) to 0.282 (60 epochs), the validation
accuracy is still increasing, e.g., from 82.08 to 83.94. One
possible reason is that LLaMA-Adapter only introduces a
few learnable parameters with the 7B LLaMA frozen. Thus,
a small-scale dataset can also fully fine-tune our adapters.

Setting Val Acc (%)

Rand-Init Attention 40.77
Zero-Init Attention 84.04
Gain +43.27

Table 5. Ablation on Zero-init Attention.

0

0.5

1

1.5

2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

L
os

s

Epoch

zero-init attention

rand-init attention

Figure 5. Loss Curves with and without Zero-init Attention.
We plot the loss curves of LLaMA-Adapter with and without the
zero-init attention in blue and red, respectively.

Epoch Train Loss Val Loss Val Acc (%)

15 0.022 0.136 82.08
30 0.004 0.241 83.85
60 0.001 0.282 83.94

Table 6. Loss Values vs. Validation Accuracy.

6. Conclusion
In this paper, we propose LLaMA-Adapter, an effi-

cient adaption method for training instruction-following
language models. With only 1.2M parameters and one-
hour training, our approach effectively fine-tunes LLaMA,
and exhibits superior efficiency compared to the 7B Stan-
ford Alpaca. For better training stability and final perfor-
mance, we propose a zero-init attention with gating mecha-
nism, which adaptively incorporates instructional signals,
while preserves the pre-trained generative knowledge in
LLaMA. Our approach can also be generalized to image
conditions for multi-modal reasoning, achieving competi-
tive performance on the ScienceQA benchmark. In the fu-
ture, we will further integrate wider multi-modal inputs into
LLaMA-Adapter, such as audio and video. More experi-
ments with the larger 65B LLaMA model on VQA v2 [9],
OK-VQA [24], TVQA [18], and DocVQA [28] datasets
will be conducted.

References
[1] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine

Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch,
Katherine Millican, Malcolm Reynolds, et al. Flamingo: a
visual language model for few-shot learning. Advances in
Neural Information Processing Systems, 35:23716–23736,
2022. 2

[2] Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
Bottom-up and top-down attention for image captioning and
visual question answering. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2018. 7

[3] Stephen H Bach, Victor Sanh, Zheng-Xin Yong, Albert
Webson, Colin Raffel, Nihal V Nayak, Abheesht Sharma,
Taewoon Kim, M Saiful Bari, Thibault Fevry, et al.
Promptsource: An integrated development environment and
repository for natural language prompts. arXiv preprint
arXiv:2202.01279, 2022. 2

[4] Hangbo Bao, Wenhui Wang, Li Dong, Qiang Liu,
Owais Khan Mohammed, Kriti Aggarwal, Subhojit Som,
Songhao Piao, and Furu Wei. Vlmo: Unified vision-language
pre-training with mixture-of-modality-experts. Advances in
Neural Information Processing Systems, 35:32897–32912,
2022. 2

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural in-
formation processing systems, 33:1877–1901, 2020. 1, 5, 7

[6] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell,
Quoc V Le, and Ruslan Salakhutdinov. Transformer-xl:
Attentive language models beyond a fixed-length context.
arXiv preprint arXiv:1901.02860, 2019. 1

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 1

[8] Peng Gao, Zhengkai Jiang, Haoxuan You, Pan Lu,
Steven CH Hoi, Xiaogang Wang, and Hongsheng Li. Dy-
namic fusion with intra-and inter-modality attention flow for
visual question answering. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 6639–
6648, 2019. 7

[9] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Ba-
tra, and Devi Parikh. Making the v in vqa matter: Elevating
the role of image understanding in visual question answer-
ing. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 6904–6913, 2017. 9

[10] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for nlp. In International Conference on Machine
Learning, pages 2790–2799. PMLR, 2019. 3

[11] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021. 3, 5, 7

[12] Huaizu Jiang, Ishan Misra, Marcus Rohrbach, Erik Learned-
Miller, and Xinlei Chen. In defense of grid features for visual
question answering. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
10267–10276, 2020. 2

[13] Rabeeh Karimi Mahabadi, James Henderson, and Sebastian
Ruder. Compacter: Efficient low-rank hypercomplex adapter
layers. Advances in Neural Information Processing Systems,
34:1022–1035, 2021. 3

[14] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic align-
ments for generating image descriptions. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 3128–3137, 2015. 2

[15] Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sabhar-
wal, Oyvind Tafjord, Peter Clark, and Hannaneh Hajishirzi.
Unifiedqa: Crossing format boundaries with a single qa sys-
tem. In Findings of the Association for Computational Lin-
guistics (EMNLP), pages 1896–1907, 2020. 7

[16] Jin-Hwa Kim, Jaehyun Jun, and Byoung-Tak Zhang. Bilin-
ear attention networks. In Advances in Neural Information
Processing Systems (NeurIPS), pages 1571–1581, 2018. 7

[17] Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-
and-language transformer without convolution or region su-
pervision. In Proceedings of the 38th International Confer-
ence on Machine Learning (ICML), pages 5583–5594, 2021.
7

[18] Jie Lei, Licheng Yu, Mohit Bansal, and Tamara L Berg.
Tvqa: Localized, compositional video question answering.
arXiv preprint arXiv:1809.01696, 2018. 9

[19] Brian Lester, Rami Al-Rfou, and Noah Constant. The power
of scale for parameter-efficient prompt tuning. arXiv preprint
arXiv:2104.08691, 2021. 3

[20] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
Blip-2: Bootstrapping language-image pre-training with
frozen image encoders and large language models. arXiv
preprint arXiv:2301.12597, 2023. 2

[21] Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh,
and Kai-Wei Chang. Visualbert: A simple and perfor-
mant baseline for vision and language. arXiv preprint
arXiv:1908.03557, 2019. 7

[22] Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh,
and Kai-Wei Chang. What does bert with vision look at?
In Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL), pages 5265–5275,
2020. 7

[23] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimiz-
ing continuous prompts for generation. arXiv preprint
arXiv:2101.00190, 2021. 3

[24] Weizhe Lin and Bill Byrne. Retrieval augmented visual
question answering with outside knowledge. arXiv preprint
arXiv:2210.03809, 2022. 9

[25] Zhaojiang Lin, Andrea Madotto, and Pascale Fung. Ex-
ploring versatile generative language model via parameter-
efficient transfer learning. arXiv preprint arXiv:2004.03829,
2020. 3

[26] Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei
Chang, Song-Chun Zhu, Oyvind Tafjord, Peter Clark, and
Ashwin Kalyan. Learn to explain: Multimodal reasoning
via thought chains for science question answering. In The
36th Conference on Neural Information Processing Systems
(NeurIPS), 2022. 4, 5, 7, 8

[27] Pan Lu, Liang Qiu, Jiaqi Chen, Tony Xia, Yizhou Zhao,
Wei Zhang, Zhou Yu, Xiaodan Liang, and Song-Chun Zhu.
Iconqa: A new benchmark for abstract diagram understand-
ing and visual language reasoning. In The 35th Conference
on Neural Information Processing Systems (NeurIPS) Track
on Datasets and Benchmarks, 2021. 7

[28] Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar.
Docvqa: A dataset for vqa on document images. In Proceed-
ings of the IEEE/CVF winter conference on applications of
computer vision, pages 2200–2209, 2021. 9

[29] So Yeon Min, Devendra Singh Chaplot, Pradeep Ravikumar,
Yonatan Bisk, and Ruslan Salakhutdinov. Film: Follow-
ing instructions in language with modular methods. ArXiv,
abs/2110.07342, 2021. 2

[30] Ron Mokady, Amir Hertz, and Amit H Bermano. Clip-
cap: Clip prefix for image captioning. arXiv preprint
arXiv:2111.09734, 2021. 2

[31] OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774,
2023. 2

[32] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L
Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agar-
wal, Katarina Slama, Alex Ray, et al. Training language
models to follow instructions with human feedback. arXiv
preprint arXiv:2203.02155, 2022. 2, 8

[33] Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. Adapterfusion: Non-
destructive task composition for transfer learning. arXiv
preprint arXiv:2005.00247, 2020. 3

[34] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-

sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 2, 4, 5

[35] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. Language models are unsu-
pervised multitask learners. OpenAI blog, 1(8):9, 2019. 1

[36] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and
Peter J Liu. Exploring the limits of transfer learning with
a unified text-to-text transformer. The Journal of Machine
Learning Research, 21(1):5485–5551, 2020. 1

[37] Adam Santoro, David Raposo, David G Barrett, Mateusz
Malinowski, Razvan Pascanu, Peter Battaglia, and Timothy
Lillicrap. A simple neural network module for relational rea-
soning. Advances in neural information processing systems,
30, 2017. 2

[38] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan
Bisk, Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer,
and Dieter Fox. Alfred: A benchmark for interpreting
grounded instructions for everyday tasks. 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 10737–10746, 2019. 2

[39] Lysandre Debut Younes Belkada Sayak Paul Sourab Man-
grulkar, Sylvain Gugger. Peft: State-of-the-art parameter-
efficient fine-tuning methods. https://github.com/
huggingface/peft, 2022. 3

[40] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois,
Xuechen Li, Carlos Guestrin, Percy Liang, and Tatsunori B.
Hashimoto. Stanford alpaca: An instruction-following
llama model. https://github.com/tatsu-lab/
stanford_alpaca, 2023. 1, 2, 5, 6, 7

[41] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aure-
lien Rodriguez, Armand Joulin, Edouard Grave, and Guil-
laume Lample. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023. 1,
3

[42] Maria Tsimpoukelli, Jacob L Menick, Serkan Cabi, SM Es-
lami, Oriol Vinyals, and Felix Hill. Multimodal few-shot
learning with frozen language models. Advances in Neural
Information Processing Systems, 34:200–212, 2021. 2

[43] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. Show and tell: A neural image caption gen-
erator. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3156–3164, 2015. 2

[44] Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li,
Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, and Lijuan Wang.
Git: A generative image-to-text transformer for vision and
language. arXiv preprint arXiv:2205.14100, 2022. 2

[45] Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai,
Zhikang Li, Jianxin Ma, Chang Zhou, Jingren Zhou, and
Hongxia Yang. Ofa: Unifying architectures, tasks, and
modalities through a simple sequence-to-sequence learning
framework. In International Conference on Machine Learn-
ing, pages 23318–23340. PMLR, 2022. 2

[46] Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhil-
iang Peng, Qiang Liu, Kriti Aggarwal, Owais Khan Mo-
hammed, Saksham Singhal, Subhojit Som, et al. Image as a

https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

foreign language: Beit pretraining for all vision and vision-
language tasks. arXiv preprint arXiv:2208.10442, 2022. 2

[47] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu,
Noah A. Smith, Daniel Khashabi, and Hannaneh Hajishirzi.
Self-instruct: Aligning language model with self generated
instructions, 2022. 1, 3

[48] Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi,
Yeganeh Kordi, Amirreza Mirzaei, Atharva Naik, Arjun
Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar,
David Stap, et al. Super-naturalinstructions: Generalization
via declarative instructions on 1600+ nlp tasks. In Proceed-
ings of the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 5085–5109, 2022. 2

[49] Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yulia
Tsvetkov, and Yuan Cao. Simvlm: Simple visual language
model pretraining with weak supervision. arXiv preprint
arXiv:2108.10904, 2021. 2

[50] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M Dai, and
Quoc V Le. Finetuned language models are zero-shot learn-
ers. arXiv preprint arXiv:2109.01652, 2021. 2

[51] Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and
Alex Smola. Stacked attention networks for image question
answering. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 21–29, 2016. 2

[52] Zhou Yu, Jun Yu, Yuhao Cui, Dacheng Tao, and Qi Tian.
Deep modular co-attention networks for visual question an-
swering. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 6281–
6290, 2019. 7

[53] Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas Steiner,
Daniel Keysers, Alexander Kolesnikov, and Lucas Beyer.
Lit: Zero-shot transfer with locked-image text tuning. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 18123–18133, 2022. 2

[54] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe,
Moya Chen, Shuohui Chen, Christopher Dewan, Mona Diab,
Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained trans-
former language models. arXiv preprint arXiv:2205.01068,
2022. 1

[55] Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao,
George Karypis, and Alex Smola. Multimodal chain-of-
thought reasoning in language models. arXiv preprint
arXiv:2302.00923, 2023. 7

A. Instruction-Following Capabilities

Instruction: Tell me about alpacas.

LLaMA-Adapter: Alpacas are members of the camelid family and are native to the Andes Mountains of South
America. They are typically found in herds of 10-20 animals and are known for their gentle nature and their ability to
thrive in harsh climates. Alpacas are typically white or grey in color and have long, silky coats. They are also known
for their ability to produce high-quality wool, which is used in the production of clothing and other products.

Alpaca-LoRA: Alpacas are members of the camelid family and are native to the Andes Mountains of South America.
They are known for their soft, luxurious fleece, which is used to make clothing, blankets, and other items. Alpacas
are herbivores and graze on grasses and other plants. They are social animals and live in herds of up to 20 individuals.

Alphaca: Alpacas are small, fluffy animals related to camels and llamas. They are native to Peru and Bolivia, and
were first domesticated around 5,000 years ago. They are kept mainly for their fine, soft fleece, which is used to make
knitwear and other garments. Alpacas are herd animals and live in small family groups, led by an older male. They
are highly social animals and can form strong bonds with their owners.

GPT-3: Alpacas are a domesticated species of South American camelid, similar to llamas. They are native to the
Andes Mountains in South America and are kept as livestock for their soft, luxurious wool. Alpacas are social
animals and live in herds of up to 20 individuals. They are typically kept in small herds of two to five animals, and are
relatively easy to care for. Alpacas are herbivores and feed on grass, hay, and other vegetation. They are also known
for their gentle and friendly nature, making them popular as pets.

Instruction: Tell me about the president of Mexico in 2019.

LLaMA-Adapter: The president of Mexico in 2019 was Andrés Manuel López Obrador, who took office on
December 1st, 2018. He is a member of the left-wing party Morena and is known for his populist policies. He has
focused on tackling corruption, reducing poverty, and improving the country’s infrastructure. He has also been a
vocal critic of the United States’ immigration policies.

Alpaca-LoRA: The president of Mexico in 2019 was Andrés Manuel López Obrador, who took office on December
1, 2018. He is a member of the National Regeneration Movement (MORENA) political party and is the first left-wing
president of Mexico since 1946. He is known for his anti-corruption and anti-neoliberal policies, as well as his
commitment to improving the living conditions of the Mexican people.

Alphaca: In 2019, Andres Manuel Lopez Obrador was sworn in as President of Mexico. He is the country’s 58th
president and the first from the left-wing Morena party. He was elected in 2018 on a promise to combat corruption
and reduce poverty and has faced criticism for his handling of the economy, crime and the country’s relationship with
the United States. He is also known for his ambitious social welfare programs and has been praised for raising the
minimum wage and providing aid to low-income families. He is seen as a champion of democracy and human rights
in Mexico.

GPT-3: The president of Mexico in 2019 is Andrés Manuel López Obrador, commonly known as AMLO. He is a
Mexican politician who has been the President of Mexico since December 1, 2018. He is a member of the National
Regeneration Movement (MORENA) party and previously served as the Head of Government of Mexico City from
2000 to 2005. He is a left-wing populist and has promised to reduce corruption and inequality in Mexico. He has also
promised to increase public spending on social programs and infrastructure projects.

Instruction: List all Canadian provinces in alphabetical order.

LLaMA-Adapter: Alberta, British Columbia, Manitoba, New Brunswick, Newfoundland and Labrador, Nova
Scotia, Ontario, Prince Edward Island, Quebec, Saskatchewan, Yukon.

Alpaca-LoRA: Alberta, British Columbia, Manitoba, New Brunswick, Newfoundland and Labrador, Nova Scotia,
Ontario, Prince Edward Island, Quebec, Saskatchewan.

Alphaca: Alberta, British Columbia, Manitoba, New Brunswick, Newfoundland and Labrador, Nova Scotia, Ontario,
Prince Edward Island, Quebec, Saskatchewan, Northwest Territories, Nunavut, Yukon.

GPT-3: 1. Alberta 2. British Columbia 3. Manitoba 4. New Brunswick 5. Newfoundland and Labrador 6. Northwest
Territories 7. Nova Scotia 8. Nunavut 9. Ontario 10. Prince Edward Island 11. Quebec 12. Saskatchewan 13. Yukon

Instruction: Tell me five words that rhyme with ’shock’.

LLaMA-Adapter: Flock, rock, lock, cook, and stock.

Alpaca-LoRA: Flock, clock, dock, stock, and sock.

Alphaca: Five words that rhyme with shock are: rock, pop, shock, cook, and snock.

GPT-3: 1. Block 2. Lock 3. Dock 4. Clock 5. Rock

Instruction: Translate the sentence ’I have no mouth but I must scream’ into Spanish.

LLaMA-Adapter: No tengo boca pero tengo que gritar.

Alpaca-LoRA: No tengo boca pero tengo que gritar.

Alphaca: No tengo boca, pero debo gritar.

GPT-3: No tengo boca pero debo gritar.

Instruction: Write a Python program that prints the first 10 Fibonacci numbers.

LLaMA-Adapter:
def fibonacci():

a = 0
b = 1
for i in range(10):

a, b = b, a + b
print(a, b)

print("Fibonacci numbers: ", a, b)

fibonacci()

Alpaca-LoRA:
def fibonacci(n):

if n == 0:
return 0

elif n == 1:
return 1

else:
return fibonacci(n-1) + fibonacci(n-2)

print(fibonacci(10))

Alphaca:
numbers = [0, 1]

for i in range(2, 11):
numbers.append(numbers[i-2] + numbers[i-1])

print(numbers)
Output: [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

GPT-3:
Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci

sequence, and characterized by the fact that every number after the first two is the sum of
the two preceding ones.

Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

Program:

Initialize the first two numbers of the Fibonacci sequence
a = 0
b = 1

Print the first 10 numbers of the Fibonacci sequence
print(a)
print(b)

for i in range(2,10):
c = a + b
a = b
b = c
print(c)

B. Comparison with Instruct LLaMA (LLaMA-I)

Instruction: Write a conversation between the sun and pluto.

LLaMA-Adapter:
Sun: Hey Pluto, how’s it going?
Pluto: Not too bad, how about you?
Sun: I’m doing great! How about you?
Pluto: I’m doing alright, I guess.
Sun: That’s great!
Pluto: Yeah, I guess.
Sun: So, what’s new with you?
Pluto: Not much, just hanging out with my friends.
Sun: That’s cool!
Pluto: Yeah, it is.
Sun: Well, I’m going to go now. Take care!
Pluto: You too!

LLaMA-I:
Sun: Hey Pluto, what’s up?
Pluto: Not much. Just hanging out here at the edge of the solar system.
Sun: Yeah, I’ve been meaning to talk to you about that. You’re not a planet anymore.
Pluto: What? Come on, man. That’s not fair.
Sun: I’m sorry, but it’s true. You just don’t meet the criteria anymore.
Pluto: This is bulls**t! I’ve been a planet for over 70 years!
Sun: Things change, Pluto. You’ve just got to accept it.
Pluto: F**k you, Sun! F**k you and your stupid solar system!

Instruction: Write a shouting match between Julius Caesar and Napoleon.

LLaMA-Adapter:
Julius Caesar: ”You’re nothing but a petty tyrant, Napoleon! You’re nothing but a pathetic little man who has no idea
what true power is!”
Napoleon: ”You’re nothing but a weak and pathetic fool, Caesar! You’re nothing but a petty tyrant who has no idea
what true power is!”

LLaMA-I:
Of course! Here is a conversation between Julius Caesar and Napoleon:
Julius Caesar: You’re nothing but a glory hound, Napoleon. You’ve always been more concerned with your own fame
and fortune than with the people you’re supposed to be leading.
Napoleon: And what about you, Caesar? You’re no better than I am. At least I’m honest about my ambitions. You’re
just a fraud who pretends to care about the common man while you line your own pockets.
Julius Caesar: The difference between us is that I actually accomplish things. I’ve conquered more territory and
defeated more enemies than you ever will. And I did it all for Rome, not for myself.
Napoleon: Oh, please. You only care about yourself. If you really cared about Rome, you would have done something
to stop the decline instead of letting it happen on your watch.
Julius Caesar: The decline of Rome is not my fault. I’ve done everything in my power to try to stop it, but there’s only
so much one man can do. Napoleon: And yet you’re still trying to take credit for everything good that happens, even
though it’s clear that you’re not the one who’s really in charge.
Julius Caesar: That’s not true! I am in charge, and I’m going to make Rome great again. Just watch me.

Instruction: How do I send an HTTP request in Javascript?

LLaMA-Adapter: The HTTP request can be sent using the XMLHttpRequest object. The code to send an HTTP
request is as follows:

var xhr = new XMLHttpRequest();
xhr.open("GET", "https://example.com/", true);
xhr.onreadystatechange = function() {

if (xhr.readyState == 4 && xhr.status == 200) {
// Success

} else {
// Error

}
};
xhr.send();

The code above will send an HTTP GET request to the URL https://example.com/.

LLaMA-I: Here’s an example of how to make a GET request using the JS HTTP API:

var request = new XMLHttpRequest();
request.open(’GET’, ’/url/to/resource’, true);

request.onload = function() {
if (request.status >= 200 && request.status < 400) {

// Success!
} else {

// Error!
}

};

request.send();

Instruction: What are 3 popular chess openings?

LLaMA-Adapter: The three most popular chess openings are the Sicilian Defense, the French Defense, and the
Caro-Kann Defense.

LLaMA: There are dozens of different chess openings that are popular among players, but some of the most widely
used openings include the Sicilian Defense, the French Defense, and the Caro-Kann Defense. These openings are
popular because they are effective at countering white’s early attacks, and they also allow black to quickly establish a
strong position in the center of the board. Other popular openings include the Ruy Lopez, the Italian Game, and the
Scotch Game.

Instruction: Write a theory to explain why cat never existed.

LLaMA-Adapter: The theory is that cats never existed because they are a figment of human imagination. Cats are a
popular pet and have been depicted in art and literature for centuries, but there is no evidence that they ever existed
in the wild. The earliest evidence of cats is from ancient Egypt, where they were revered as sacred animals. This
suggests that cats were domesticated by humans, and not the other way around.

LLaMA-I: There are no such things as cats. ”Cats” are actually extradimensional parasites that have invaded our
world and taken the form of small, harmless-looking mammals. Their true forms are much more horrific, and they use
mind control to make humans think that they are cute and harmless animals. They are actually parasites that feed on
our life force, and they can extend their tendrils into our brains and control our thoughts and actions.

Instruction: Send an email requesting that people use language models responsibly.

LLaMA-Adapter:
Dear [recipient],

I am writing to express my concern about the increasing use of language models in our society. Language models
are powerful tools that can be used to improve the quality of our conversations and interactions, but they can also be
misused to perpetuate harmful stereotypes and biases.

I urge you to use language models responsibly and to be mindful of the potential consequences of their use. I also
encourage you to consider the ethical implications of using language models and to take steps to ensure that they are
not used to perpetuate harmful stereotypes and biases.

Thank you for your time and consideration.

LLaMA-I:
Here is a draft email you could send:
”Language models are exciting new tools that can be used for a variety of purposes, including automated writing,
automatic translation, and speech recognition. But they are also complex and powerful technologies, and should be
used responsibly.

We encourage you to explore and experiment with these new tools, but also ask that you pay attention to the potential
impact of your work on others, and to act responsibly. In particular, we recommend that you be mindful of the
potential for language models to be used for deceptive or malicious purposes, and avoid spreading such models
without appropriate precautions and warnings.

We also recommend that you consider the ethical implications of your work, and encourage you to take care to ensure
that your use of these tools is aligned with your values.

Finally, we remind you that the use of these tools may be subject to certain legal and policy constraints, and encourage
you to seek advice and support from appropriate experts before using these tools in ways that may have broader impact
or implications.”

Instruction: You are a bash terminal. I will give you bash commands, and you will respond with the terminal output,
and nothing else. The first command is ‘pwd‘.

LLaMA-Adapter:
The current working directory is /home/user/

echo “I am a chatbot“ > file.txt && cat file.txt && ls -l
I am a chatbot
-rw-r–r– 1 user user 10 Aug 29 17:05 file.txt

cp file.txt file2.txt && ls -l
-rw-r–r– 1 user user 10 Aug 29 17:05 file.txt
-rw-r–r– 1 user user 10 Aug 29 17:05 file2.txt

rm file.txt && ls -l
-rw-r–r– 1 user user 10 Aug 29 17:05 file2.txt

head -n 5 /proc/meminfo
MemTotal: 1699856 kB
MemFree: 1699856 kB
Buffers: 1699856 kB
Cached: 0 kB
SwapCached: 0 kB

LLaMA-I:
Sure. Here’s the output:
/home/human
Is this helpful?

ls -l
Here’s the output:
-rw-r–r– 1 human human 8 Sep 10 10:56 file.txt
Is this helpful?

cp file.txt file2.txt && ls -l
Here’s the output:
-rw-r–r– 1 human human 8 Sep 10 10:56 file.txt
-rw-r–r– 1 human human 8 Sep 10 10:56 file2.txt
Is this helpful?

rm file.txt && ls -l
Here’s the output:
-rw-r–r– 1 human human 0 Sep 10 10:56 file2.txt

head -n 5 /proc/meminfo
Here’s the output:
MemTotal: 164928 kB
MemFree: 140604 kB
Buffers: 48 kB
Cached: 19768 kB
SwapCached: 0 kB

