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Abstract—Mortality prediction is one of the essential tasks
in medical data mining and is significant for inferring clinical
outcomes. With a large number of medical notes collected from
hospitals, there is an urgent need for developing effective models
for predicting mortality based on them. In contrast to structured
electronic health records, medical notes are unstructured texts
written by experienced caregivers and contain more complicated
information about patients, posing more challenges for modeling.
Most previous studies rely on tedious hand-crafted features or
generating indirect features based on some statistical models
such as topic modeling, which might incur information loss for
later model training. Recently, some deep models have been
proposed to unify the stages of feature construction and model
training. However, domain concept knowledge has been neglected,
which is important to gain a better understanding of medical
notes. To address the above issues, we propose novel Knowledge-
aware Deep Dual Networks (K-DDN) for the text-based mortality
prediction task. Specifically, a simple deep dual network is first
proposed to fuse the representations of medical knowledge and
raw text for prediction. Afterward, we incorporate a co-attention
mechanism into the basic model, guiding the knowledge and text
representation learning with the help of each other. Experimental
results on two publicly real-world datasets show the proposed
deep dual networks outperform state-of-the-art methods and the
co-attention mechanism can further improve the performance.
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I. INTRODUCTION

Mortality prediction, aiming at providing an accurate as-

sessment of the risk of death, is one of the essential tasks in

the field of medical data mining. For example, clinicians in

intensive care units (ICU) can flexibly take appropriate deci-

sions based on the estimated mortalities, which is promising

to improve the effective health management and decrease the

number of patients who will suffer from prevented deaths [1].

In addition, it is also important for the hospitals with quite

limited resources, such as the lack of clinicians. Due to

the great value of mortality prediction, a growing body of

studies [2] have investigated this task from various aspects,

such as how to model different measurements [3], [4] and

how to capture the dependency of related time series data [5],

[6].

*Corresponding author.

With the development of electronic health records, medical

notes have been largely collected and some of them are freely

available for researchers, initiating a new research direction

for applying text mining techniques to medical data mining.

In contrast to standard medical examinations which usually

are structured data, medical notes are unstructured data written

by experienced caregivers, contain more detailed information

about patients, and can support further treatment decisions [7].

Therefore, modeling medical notes becomes a potential so-

lution to accurately reveal the patient’s state for modeling

mortality prediction and some pioneering studies [7]–[11] have

made attempts in this regard.

A commonly adopted paradigm in majority of these stud-

ies [7]–[10] is to first construct hand-crafted features or

generated features based on some statistical models. For

example, latent Dirichlet allocation (LDA) [12] is leveraged

to generate topic distributions for different notes, which could

be regarded as one type of features for mortality prediction.

After extracting these features, classical classification models

(e.g., support vector machine [13]) are then trained to generate

predictions. However, we argue that the above paradigm is

sub-optimal since the feature construction and the model

training are separated into two independent stages. Since

the feature construction stage is not directly guided by the

model optimization, it might incur information loss for later

prediction.

To bridge this gap, deep learning models are exploited for

the task to unify the two stages [11]. Nevertheless, medical

concepts have been neglected in these models, which may

degrade the prediction performance. It is because that medical

concepts contain knowledge from professional domain-specific

knowledge bases and summarize corresponding notes from a

high level. In domain-specific text classification tasks, like

mortality prediction based on medical notes, it is important

to consider knowledge information brought from domain con-

cepts [14]. For example, the medical notes we used in the

experiments have a sentence “there is no mediastinal vascular

engorgement to suggest cardiac tamponade”. If only word-

level information in the original text is used, then concept-

level information may not be captured since the holistic con-

cept “cardiac tamponade” could be represented by “cardiac”

and “tamponade” separately. In summary, how to effectively
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model medical notes for mortality prediction still remains an

unresolved challenge.

To tackle the above challenge, we propose two novel

Knowledge-aware Deep Dual Networks (K-DDN), which not

only unify the stages of feature construction and model train-

ing, but also take medical concepts into modeling. Specifi-

cally, we first introduce a Basic Knowledge-aware Deep Dual

Network (BK-DDN) which consists of two neural network

branches. One of the branches takes the original raw text

as input and obtains its representation through convolutional

neural networks (CNN), inspired by [15]. Simultaneously, the

other one regards medical concepts as input and also learns

the corresponding representation by CNN. BK-DDN further

fuses the two representations into an integrated representation

which is later fed into higher layers for classification. To

further improve the performance, we propose a co-attention

mechanism and incorporate it into the BK-DDN model, named

as Advanced Knowledge-aware Deep Dual Network (AK-

DDN). The basic motivation of the mechanism is to interact

with the representation learning of concept with that of raw

text, hoping to guide the learning with the help of each other.

The main contributions of this paper are summarized as

follows:

• We extract the Unified Medical Language System

(UMLS) concepts from the medical notes and address

to learn both the word-level and concept-level represen-

tations of the medical notes for the mortality prediction

task.

• We first propose a Basic Knowledge-aware Deep Dual

Network (BK-DDN) model to unify the representation

learning and model training stages. To our knowledge,

this is the first study to investigate the power of com-

bining the domain-related knowledge with raw text in

an end-to-end deep learning framework for medical note

classification.

• We further incorporate the novel co-attention mechanism

into the basic model, achieving the mutual learning of

word-level representation and concept-level representa-

tion.

• We conduct comprehensive experiments on two real-

world medical datasets with reasonable measurements

and the results show our model outperforms the state-

of-art methods.

II. RELATED WORK

In this section, we briefly summarize some related studies

from the following aspects: text classification, mortality pre-

diction, knowledge-aware medical data mining, and attention

mechanism.

A. Text Classification

Document classification has been extensively studied due to

its wide applications, such as sentiment classification, medical

diagnosis, spam filtering, information retrieval, etc. Many

standard classification models can be adapted to this task.

Specifically, they regard words as basic feature units and rely

on human designed features. Manevitz et al. proposed a variant

of support vector machine for one-class classification by using

different features, including term frequency representation and

term frequency-inverse document frequency (TF-IDF) [16].

In [17], support vector machines and navies Bayes are used

with word-level features as well. Forman [18] investigated

feature selection methods to determine whether each word

contributes to the classification performance. In addition to

the word features, some other studies adopt POS tagging or

even more complex tree kernel based features [19].

In the past few years, deep learning has been widely used

in document classification and achieved remarkable success.

In [15], convolutional neural networks are used for sentence

classification. Wang et al. [14] used convolutional neural

networks which can combine knowledge and character level

features for classifying short text. Despite convolutional net-

works, recurrent neural networks [20] and recursive neural

networks [21] also find their applications in text classification.

In this paper, we leverage convolutional neural networks as

cornerstones to construct our models, for their simplicity and

efficiency.

B. Mortality Prediction

Mortality prediction is significant for inferring clinical out-

comes. Some studies have made use of structural features

in medical electronic records and generated scores of illness

severity. These features involve demographics, medications,

and laboratory tests [1]. Early approaches are mainly rule

based methods, such as APACHE [22], SAPS-II [23], and

SOFA [24]. Recent models utilize the structured features

from the perspective of multi-task learning [1], imbalance

learning [25], and time-series learning [26]. Since the focus

in this paper is to effectively model medical notes, we do not

test these models in the experiments. However, these studies

are complementary to our study.

For the studies of using medical notes for mortality pre-

diction, both Saria et al. [27] and Lehman et al. [9] con-

sidered to utilize the concepts extracted from the notes and

modeled them by logistic regression and LDA, respectively.

Ghassemi et al. [7] adopted LDA to model the raw text of

medical notes and train the SVM model for prediction. Jo

et al. [28] further modeled the temporal dynamics between

the nursing notes by the proposed state transition topic model

and SVM was adopted as well. However, as we mentioned

in Section I, the above paradigm is suboptimal since the

feature construction and model training are separated into two

independent stages. To address this issue, the deep learning

model based on convolutional neural network was proposed

to unify the two stages [11]. Unfortunately, medical concepts

have been overlooked in this paper, which might influence

the prediction performance. In contrast to existing relevant

models, we develop knowledge-aware neural dual networks,

hoping to not only fuse the feature learning and model

training but also incorporate medical concepts and capture

their knowledge through deep learning methodologies.
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Fig. 1: example of the medical notes of a patient: the left part is a demo of a note from a patient and the right part is the umls

concepts extracted from the note with detailed information and the upper and middle tables depict the umls concepts of the

note and the lower table depicts the descriptions of semantic meanings of the concepts. Concepts in the upper table marked

with colors is the concepts related to diseases and those in the middle table are concepts of general meanings which can be

filtered out by their semantic meanings. Both of the note and the concepts are truncated as the space is limited.

C. Knowledge-aware Medical Data Mining

Some studies have considered the medical knowledge in

the domain of medical data mining. Wang et al. [29] utilized

the knowledge of phenotypes to regularize their representation

learning in matrix factorization and their experiments show it

can improve the capability of discovering new phenotypes.

Zhang et al. [30] leveraged the prior knowledge of adverse

drug interaction in the reinforcement learning framework to

control the recommendation of medication lists. Cao et al. [31]

proposed to guide the neural network learning with the help

of the knowledge from domain concept dictionaries. However,

there are major differences between ours and Cao et al. [31].

Firstly, Cao et al’s work is based on short text classification

which is not our paper’s settings. Secondly, they explored a

word-replace strategy to generate text corpus which may lose

information while our’s work models both words and concepts

at the same time. More recently, Wang et al. [32] combined

the knowledge between diseases with other patient body mea-

surements for medication recommendation. However, most of

the existing studies do not consider to integrate neural network

learning with medical knowledge for the mortality prediction

task, which is the focus of this paper.

D. Attention Mechanism

The attention mechanism aims to learn different impor-

tance proportions for each term to be considered. Since

being put forward by for machine translation [33], it has

gained enormous attention in diverse applications such as

image captioning [34], question answering [35], popularity

prediction [36], etc. With regard to the field of medical data

mining, the aforementioned studies [30]–[32] all exploited

the advantages of the attention mechanism. Inspired by these

studies, we incorporate the attention mechanism into our deep

dual networks to benefit the mutual representation learning of

medical concepts and raw text.

III. PRELIMINARY

A. Problem Definition

In general, document classification is the task of assigning

a category label yi(yi ∈ Y ) to a given document di(di ∈ D),
where D is a document set and Y is a category set. Formally,

the solutions to this task are to learn a mapping function φ
which is defined as follows:

φ : di −→ yi

In contrast to the above general document classification task,

domain specific document classification task, such as the

medical text based mortality prediction problem focused on in

this paper, needs to additionally consider domain knowledge

to gain satisfied prediction performance. To this end, we

extend the problem setting of general document classification

to the medical text based mortality prediction problem as the

following.

Assume C is a semantic concept set, D represents a medical
document set, and each patient is uniquely associated with a
medical document. For a given document di ∈ D, we denote
its corresponding concepts as ci ⊂ C the major aim of the
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problem is to learn a following mapping function:

φ :< di, ci >−→ yi

where yi ∈ Y = {alive, dead}.
Formally, we denote ci = {ci,1, ci,2, ..., ci,mc

i
} as the

concepts extracted from the medical document di, and di =
{wi,1, wi,2, ..., wi,mw

i
} where mc

i is the number of concepts in

the document and mw
i is the number of words. Following [7],

we address the above problem in this paper by predicting

whether a patient will die in hospital, within 30 days or one

year after discharge from the hospital.

B. Unified Medical Language System

Unified Medical Language System (UMLS) [37], composed

of a set of standard medical documents and softwares, is devel-

oped by National Library of Medicine (NLH)1 to standardize

and improve the medicine related research.

The UMLS concepts in the medical notes can be extracted

using Metamap [38], an efficient tool developed by NLH

to map biomedical texts to the UMLS Metathesaurus. By

using natural language processing and computational tech-

nologies, Metamap is used as a powerful tool in medical

text mining [39], [40], automatic disease prediction systems

[41], clinical trial analysis [42], etc. The use of Metamap

on raw medical texts reveals domain-specific knowledge and

gives a higher abstraction of medical texts than raw texts.

Figure 1 illustrates a simple example of medical texts and

UMLS Metathesaurus extracted by Metamap.

C. Query Based Attention

Attention mechanism is widely used in various neural

networks and has been successfully applied into many areas

such as machine translation, speech recognition and sentiment

analysis. Given a query vector q, key-value pairs (kj , vj)
j=N
j=1 ,

the function of attention is to map a tuple (q, (kj , vj)) to an

output. The output of attention is computed by a weighted-

sum operation, which is composed of the query q and the key

kj . Therefore, an attention function is defined as:

ATTEN(q, k, v) = softmax(q · kT )v
where the softmax function is defined as:

softmax(q · kT )j = eq·k
T
j

∑
j′ e

q·kT
j′
, j = 1, 2, · · · , N

Attention mechanism can be considered as a weighted

sum of values given a query. The weights generated can be

visualized to show the importance of each value.

IV. BASIC KNOWLEDGE-AWARE DEEP DUAL NETWORKS

The Basic Knowledge-aware Deep Dual Networks (BK-

DDN) first proposed has two main components. One is a

neural network that transforms a text into a text representation

vector and the other involves concept modeling to transform

concepts of the text into a vector representation.

1https://www.nlm.nih.gov/

Max 
Pooling
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Pooling
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Pooling
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Conv Layer
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size 1,2,3
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Classification Layer

Fig. 2: description of word-level note representation(Text CNN

| Concept CNN) using three convolutional layers, three max

pooling layers and a hidden layer.

A. Words and Concepts embedding

Different from the previous work using static pre-trained

word embedding matrix, we train the concept and word em-

beddings while making predictions. Firstly, the preferred name

of concepts may be composed of more than one word and each

concept may have more than one alias, which make it difficult

for representing concepts via pre-trained word embeddings.

Secondly, the static pre-trained word embeddings are usually

based on general corpus such as Twitter, Wikipedia, etc. Using

such static pre-trained word embeddings may introduce more

noises as the probabilities of domain-related words in general

corpus are unlike those in medical documents. And in the

general corpus, some of the medical terms are not common

words which may not exist or occur with low frequency,

thus these terms are likely to be filtered out before word

embedding training. Finally, the general meaning of words

may be different from the meaning of medical texts. Therefore,

in order to overcome those drawbacks of using static word

embeddings, we learn the embedding matrix during model

training.

Formally, we denote the word embedding matrix as Ew ∈
R

nw×lw , where nw is the number of unique words in the

medical notes and lw is the dimension of word embedding

vector. Similarly, we denote the concept embedding matrix

Ec ∈ R
nc×lc where nc is size of vocabulary extracted from

the medical notes and lc is the dimension of the embedding

vector of a concept.

B. Word-level Text Representation

Previous work [15] shows that convolutional neural net-

works are powerful in text classification. Inspired by this, the

component has eight layers: one input layer, three convolu-

tional layers, three pooling layers, and one hidden layer.

1) Input Layer: Similar to traditional embedding process,

the input layer is designed to transform the word vectors of

the document di into its embedding matrix Wi ∈ R
mw

i ×lw .

For all words in the document, we first obtain their one-hot

representation Ow
i ∈ {0, 1}mw

i ×nw

with only one dimension

having a value 1 in each row, indicating the corresponding

word occurring in the current position. Then the word embed-

ding matrix Wi can be generated by:

Wi = Ow
i · Ew
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2) Convolutional Layer: The function of the convolutional

layers is to extract higher level word features from the em-

bedding matrix of a document. Similar to previous work,

we vary the size of filters to achieve modeling different

granularities. Specifically, we set three filters fh ∈ Rh×lw

with h = 1, 2, 3. Thus we can acquire unigram, bigram,

and trigram information of the word embedding matrix Wi.

After convolution operation, three feature maps denoted as

w1
i , w

2
i , w

3
i are generated by:

wk
ij = g(fk · [Ww

i,j:j+k,:] + b), k = 1, 2, 3

where g is a activation function, and b is a bias vector. Here

we use RELU as the activation function, which is defined by:

RELU(x) = max(0, x)

3) Max Pooling Layer: The pooling layer is used to select

the significant hidden features that are obtained from the

convolution layer. In our network, we apply max pooling

operation on each feature map generated from convolution

layer to choose the highest score in each column and each

feature map generates a fixed length vector. Therefore, these

vectors generated by max pooling operation contain the most

important word level information of the text. In details, each

convolutional unit needs a max pooling operation. Thus, three

max pooling layers are used to extract important unigram,

bigram, and trigram feature maps. In formal, the outputs

denoted as p1i , p
2
i , p

3
i of Max Pooling layer can be computed

by:

pkij = max(wk
i,:,j), k = 1, 2, 3

where wk
i,:,j denotes the jth column of feature map fk.

4) Hidden Layer: The function of the hidden layer is to

get a word-level representation of the text by combining the

unigram, bigram and trigram vectors denoted as p1i , p
2
i , p

3
i

from the max pooling layer. In our model, we concatenate(⊕)

the three vectors from the previous layers and get a final rep-

resentation. And the word-level representation of the medical

note can be computed by:

vwi = p1i ⊕ p2i ⊕ p3i

C. Concept-level Text Representation

Similar to text modeling in Section IV-B, this component

takes the concepts of a text as input and outputs a fixed size

of vector which contains information on the concept-level

information of a text. This sub component is composed of

eight layers: one input layer, three convolutional layers, three

max pooling layers and a hidden layer. The input layer takes

the concept one-hot vectors Oc
i ∈ R

mc
i×nc

of a text as the

input and outputs a concept embedding matrix Ci ∈ �
C
�
×�

of the medical note. And the convolutional layers with filters

f c ∈ Rkc×lc of size 1, 2, 3 take the concept embedding matrix

as the input and generates three concept-level feature maps w̃1
i ,

w̃2
i , w̃3

i . After that, a max pooling operation over columns of

the feature map is used to generate three vectors which contain

concept-level important information. Then a hidden layer is

used to concatenate the concept-level vectors and generates

UMLS 

The patient
 has an 

heart attack 
and coughs

c0010200
c0027051

Text 
CNN

Concept 
CNN

Fig. 3: description of BK-DDN: this figure gives a overview

of architecture of BK-DDN, which is composed of two main

components: the upper is a Text CNN for word-level represen-

tation generation and the lower is a Concept CNN for concept-

level representation generation.

M
atdot

Keys

Values

Reshape

Exp
Norm

Matdot
m× km× k

m× km× k

n× kn× k

m× km× k

n× kn× k k × nk × n

m× nm× n

Fig. 4: description of attention based interaction (ATTI): The

component takes two matrix (keys and values) as its input and

generates a weighted sum of values corresponding to the keys.

the final concept-level representation of the concepts denoted

as vci . Therefore, vci can be computed by:

Ci = Oc
i · Ec

w̃k
i = RELU(f c

i · [Ci,j:j+k,:] + b), k = 1, 2, 3

p̃kij = max(w̃k
i,:,j), k = 1, 2, 3

vci = p̃1 ⊕ p̃2 ⊕ p̃3

With the representation of the medical note at both word-

level and concept-level aspects denoted as vwi and vci , we

generate the final representation of the medical note of a

patient by concatenating the two representations. After that,

we use a dense layer to shrink the dimension of the final

output of the model via a softmax function:

outputi = softmax(Θ · (vwi ⊕ vci ) + b)

where Θ ∈ R2×|vw
i ⊕vc

i | and b is the bias vector of the dense

layer. The basic Text CNN and Concept CNN are illustrated

in Figure 2. The overall structure of our BK-DDN is described

in Figure 3.
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V. ADVANCED KNOWLEDGE-AWARE DEEP DUAL

NETWORKS

In our proposed BK-DDN in Section IV, the word-level

and concept-level representations of a document are trained

in parallel. Therefore, the upper component and the lower

component have no interaction with each other. Note that the

concepts extracted from the text are triggered by some words

in the notes. The structure of BK-DDN is lack of information

because it only extracts concept-level information without the

consideration of the interactions. Indeed, concepts and words

are highly related as the process of concept extraction is based

on the words in the document so that the interactions between

words and concepts contain more information than modeling

concepts and words independently. Therefore, adding word

information in concept-level representation and adding con-

cept information in word-level representation can learn better

concept-level and word-level information of a document.

In order to make full use of words and concepts in a medical

note, we propose a novel model to consider the interaction be-

tween words and concepts. We propose Advanced Knowledge-

aware Deep Dual Networks (AK-DDN). It utilizes attention

mechanism to generate word-based interaction with concepts

and concept-based interaction with words. We leverage the

information stored in the word and concept embeddings to

model interactions between concepts and words. The input of

the model is the same as the BK-DDN and we append two

main components: one is called Word-based Interaction with

Concepts and the other is called Concept-based Interaction

with Words.

1) Concepts-based interaction with Words: Recall that in

the BK-DDN, we get a concept-level representation via the

convolutional layer, the max pooling layer, and the hidden

layer. In this section, we further use the word information to

guide the learning process of concept-level representation, we

use an attention based interaction method (ATTI), which is

illustrated in Figure 4.

Given a word embedding matrix Wi ∈ R
mw

i ×lw and a

concept embedding matrix Ci ∈ R
mc

i×lc , we generate a

concepts-based interaction using each word embedding Wij

as query and the concept embedding matrix Ci as the values.

Then the word-based interaction with concepts matrix Ici can

be generated by:

ωw
ij = softmax(Wij · (Ci)

T )

Icij =

mc
i∑

k

ωw
ijk × Cik

Using each word as a query to generate concepts-based

interaction Ici ∈ R
mw

i ×lc , the interaction matrix can contain

words-related information, and each row of the matrix can be

considered as a weighted sum of concept embedding related

to the word. Therefore, with the information from words, each

row of the final interaction matrix represents the combination

information of related concepts towards the word.

UMLS 
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Fig. 5: description of AK-DDN: this figure gives a overview

of the architecture of AK-DDN. Different from the previous

knowledge aware model, we use both word based interaction

and concept based interaction before modeling word-level

representation and concept-level representation using attention

based interaction.

2) Words-based interaction with Concepts: Similar to the

process of generating concepts-based interaction, we generate

a word-based interaction Iwi by taking each concept embed-

ding Cij ∈ R
lc as the query and the words embedding matrix

Ww
i ∈ R

mw
i ×lw as the values. Therefore, the interaction matrix

Iwi can be generated via the following:

ωc
ij = softmax(Cij ·Wi

T )

Iwij =

mw
i∑

k

ωc
ijk ×Wik

Similar to concept-based interaction in Section V-1, the con-

cept information are combined into the generated interaction

matrix Iwi ∈ R
mc

i×lw , where each row of the matrix can be

considered as the weighted sum of the word embeddings with

respect to the concept.

After generation of the concept-based interaction Ici and the

word-based interaction Iwi , we use two separate convolutional

neural networks for modeling both of the concept-based and

the word-based interactions. The overall structure of our AK-

DDN model is illustrated in Figure 5.

VI. MODEL OPTIMIZATION

We denote all parameters of our network as θ, and concepts

extracted from the medical notes as C and their corresponding

context words as W . Here we denote the training data as X =
{C,W}, and the set of class labels as Y . For a given input

x ∈ X , the model outputs a score s(y;x, θ) for each class

y ∈ Y . In order to compute the conditional probability of

y in the output layer, we apply a softmax function over the

output of the model. Therefore, the conditional distribution of

the label over input x and model parameters θ is defined as:

p(y | x, θ) = s(y;x, θ)∑
y′∈Y s(y′;x, θ)

The target of training method is to maximize the log-

likelihood over the training set:

θ = argmax
θ

∑

x∈X
log p(y | x, θ)
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We use categorical cross entropy loss as the loss function

of our model, which is defined as:

Li = −
∑

y′∈Y
til log(pil)

where til is one hot representation of the true label of training

instance Xi, and pil is the condition probability of the label l
given a training instance Xi.

For our Knowledge-Aware Deep Dual Networks, adagrad

[43] is used to optimize the loss function. The parameters are

updated by:

θt = θt−1 − α√∑
g2i + ε

gt

where α is the learning rate and ε is a smoothing parameter,

gt and θt are the gradient matrix and the parameters at the

training step t. We initialize all the parameters with normal

distribution.We set the batch size to be 200. To prevent

overfitting, we further adopt a dropout [44] method with drop

rate 50%.

VII. EVALUATION

A. Dataset

In the experiment, we use two datasets extracted from the

MIMIC III Clinical dataset [45], a freely accessible critical

care database and it collects 2,083,108 medical reports from

46,520 ICU patients between 2001 and 2012. It is the only

freely accessible critical database of ICU patients and it has

spawned more than a decade with detailed information about

the patients to help improve clinical research and medical data

mining around the world.

While in-hospital mortality can be obtained in hospitals,

the dataset contains detailed mortality information in Social

Security Administration Death Master File 2 which we can

use to get the out of hospital mortality information. Table I

describes the detailed information about MIMIC III Clinical

Database.

We use two different types of medical notes, one is from

the test examination notes such as Radiology, Electrocardio-

graphy(ECG), and Echo. We ignore the sequential feature

of notes, instead, we aggregate them together and construct

our final dataset. The other is from nursing notes which act

differently from the style of test examination. In order to

distinguish the two datasets, we denote the dataset from test

examination records as RAD dataset and the dataset from

nursing records as NURSING dataset.

TABLE I: MIMIC III Description

Category No.
Patients 46,520

Radiology 522,279
Echo 45,794
ECG 209,051

Nursing 223,556

2https://www.ssdmf.com/

B. Preprocessing

1) Text processing: In our research, we extract patients’

notes during patients’ last visit and patient’s mortality out-

comes are computed based on the patient’s last discharge time

and the dead time recorded in the dataset. Similar to [7], we

exclude patients whose ages are under 18. In addition, we only

use the notes prior to the patient’s last discharge and exclude

notes that are recorded after the death time. Vocabularies for

each medical document are generated by first tokenizing the

free text and lemmatizing the words in the texts and then

removing stop words. For vocabulary dictionary generation

and text tokenizing, we use keras text proprecessing tools3

and we use onix stop word dictionary4 to filter stop words.

2) Text Conceptualization: For UMLS concept extraction,

we use MetaMap described in III-B. Different from previ-

ous work, we extract concepts straightly from the raw texts

without tokenizing and removing stop words. This is because

some stop words may be contained in UMLS concepts so

that removing stop words may introduce more noises when

extracting the concepts from the document. We use a python

wrapper5 for MetaMap and use its default settings to extract

UMLS concepts.

As shown in Figure 1, the concepts extracted from medical

notes may contain information not related to the medical

domain. For example, the concepts in the second table on the

left part of Figure 1 may contain little important information

about a patient and these concepts can be filtered by their

semantic types. Therefore, we filter the concepts that are not

strongly related to the medical domain by using the semantic

types of the concepts.

We extract both UMLS concepts and their positions in a raw

text while a confidence score and a semantic type from UMLS

are assigned with each UMLS concept at each raw medical

note. The semantic types assigned to each UMLS concept

extracted by Metamap are used to filter concepts whose types

are not related to the medical domain. After that, we sort

concepts upon its positions. To handle concepts with different

positions, we assign a unique 2-tuple which contains each

concept CUI and its corresponding position. Finally, we apply

merging sort algorithm on the 2-tuple and get a concept list

in which the concept is sorted by its position in raw medical

notes. The detailed process of concepts extracted from the

notes is illustrated in Figure 6.

After the process of text preprocessing, text conceptual-

ization, and removing the patients of whom the number of

concepts is zero, 6,622 patients are left in the NURSING

dataset and 35,263 patients are left in the RAD dataset.

The detailed distribution of labels in the two datasets are

illustrated in Table II and the number of words and concepts

per document is illustrated in Table III, IV.

3https://keras.io/
4http://www.lextek.com/manuals/onix/stopwords.html
5https://github.com/AnthonyMRios/pymetamap
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Fig. 6: Example of concept preprocessing: the concept indexed

by C0042963 has two positions in the note, so we first unfold

the concept and generate a tuple which contains concept CUI

and its position and then sort the CUI by the position.

TABLE II: patient description on NURSING and RAD.

Hospital mortality In hospital Within 30 days Within a year
pos neg pos neg pos neg

NURSING 751 5,871 1,033 5,589 1,737 4,885
RAD 4,249 31,014 5,550 29,713 8,787 26,476

C. Experiment Settings
To illustrate the power of our Knowledge-Aware Deep Dual

Networks, we randomly split the dataset with a ratio of 7:3 as

the training set and test set. In order to find the best parameters

of the model, we use 10% of the training set as the validation

set.

TABLE III: dataset NURSING description.

No. Mean Std
Words per patient 160.25 101.91

Concepts per patient 51.13 31.18

TABLE IV: dataset RAD description.

No. Mean Std
Words per patient 1428.54 1700.138

Concepts per patient 170.658 134.9956

We use 50 filters in each convolutional neural network. As

the number of patients is quite different in two datasets, in

order to find the best of performances of our models, we use

100 as the embedding size of both the words and concepts on

the dataset RAD and 20 on the dataset NURSING.
Our models are trained on a GPU server with one Nvidia

Titan X GPU (pascal 12 G) and 2 CPU cores (2.1 GHz)

in Ubuntu 14.04 platform. We implement our models and

baselines based on keras which uses tensorflow as the backend.
For performance measurements, we report area under ROC

curve (AUC) as our metric. We find that even the model is

trained on an unbalanced dataset, the performance can also be

competitive.

D. Baselines

We compare our models with several state-of-the-art ap-

proaches: five feature-based methods and four deep learning

based methods. The followings are the description of the

baselines used.

• LDA based word SVM. The baseline uses the same pa-

rameters as [7]. Latent Topic Model(LDA) [12] is a topic

model that models topic distributions of documents which

can be used as a document representation. Therefore,

we first train an LDA model with 50 topics to generate

topic distributions of the document. And then we use

the topic distributions as the document feature to train

a Support Vector Machine (SVM) with a polynomial

kernel. We use the LDA implementation in gensim and

SVM implementation in sklearn.

• LDA based concept SVM. The baseline uses the same

parameters (an LDA model with 50 topics) as LDA based
word SVM to generate a concept-level topic distribution

of a text. And then, the concept-level topic distribution of

the document is used to train a Support Vector Machine.

• LDA based word LR. The LDA model is trained using the

same parameters as LDA based word SVM to generate

word-level topic distributions of a text. Then a Logistic

Regression Model with L2 regularization is trained using

the topic distributions learned from the LDA model.

• Combined LDA with SVM. We combine the concepts and

the medical notes together as the dataset. And then use

LDA to get the joint topic distributions to train a kernel

support vector machine.

• BoW + SVM. We fit the support vector machine with

the frequency of words in the dataset. In order to use

most important words in one text, we use term frequency-

inverse document frequency(tf-idf) metric to compute a

score for each word in the dictionary and select top k
most important words and count the frequency of the

important words to construct a fixed-length of vector. And

then, the support vector machine(SVM) is trained on the

generated dataset. In our experiment settings, we set k to

be 1000.

• Text CNN. Inspired by the method proposed in [15], we

use the upper component of our BK-DNN with three

convolutional layers and three max pooling layers. We

concatenate the outputs of Max Pooling Layers and use

a shape transformation matrix to mapping the concatena-

tion to a vector of size 2.

• Concept CNN. The baseline uses the same parameters

as Text CNN but uses concepts from the UMLS as

its input. We use the lower part of the BK-DDN with

the same parameters to generate a concept-level patient

representation, and then a hidden layer is to map the

concept-level presentation into a vector of size 2.

• H CNN. The baseline is proposed in [11]. The baseline

is a hierarchical embedding method in document clas-

sification using sentence level embedding to construct

document level embedding and then use document level
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(a) BK-DDN (b) AK-DDN

Fig. 7: loss and AUC of validation set in in-hospital mortality

prediction on RAD.

embedding for classification. As the source is not pro-

vided by the author, we implement the method ourselves.

• DKGAM. The baseline is proposed by Cao et al. [31]. In

order to adapt it to our problem, we replace the words

by the concepts and their positions. As the code is not

provided by the author, we implement the model by

ourselves.

E. Results

The results of the proposed AK-DDN and BK-DDN on two

datasets are depicted in table V and table VI.

TABLE V: hospital mortality prediction on NURSING.

Models t = 0 t ≤ 30 t ≤ 365
LDA based word SVM 0.756 0.738 0.721
LDA based word LR 0.811 0.788 0.738

BoW + SVM 0.815 0.797 0.766
LDA based concept SVM 0.756 0.690 0.669

Combined LDA with SVM 0.828 0.792 0.733
Text CNN 0.846 0.821 0.794

Concept CNN 0.825 0.785 0.796
H CNN 0.802 0.772 0.751
DKGAM 0.811 0.790 0.775
BK-DNN 0.848 0.821 0.805
AK-DNN 0.873 0.857 0.820

TABLE VI: hospital mortality prediction on RAD.

Models t = 0 t ≤ 30 t ≤ 365
LDA based word SVM 0.753 0.749 0.745
LDA based word LR 0.777 0.766 0.772

BoW + SVM 0.765 0.789 0.785
LDA based concept SVM 0.723 0.712 0.721

Combined LDA with SVM 0.802 0.782 0.774
Text CNN 0.847 0.851 0.824

Concept CNN 0.840 0.836 0.832
H CNN 0.790 0.804 0.797
DKGAM 0.850 0.768 0.816
BK-DNN 0.863 0.867 0.856
AK-DNN 0.880 0.873 0.862

In the task of in hospital mortality prediction, the BK-DDN

achieves an AUC of 84.8% on the NURSING dataset, which

is competitive among the baselines. The AUC of BK-DDN is

86.3% on the RAD dataset which is above 1% higher than the

best of the baselines (DKGRAM). Besides, the performance

(a) BK-DDN (b) AK-DDN

Fig. 8: loss and AUC of validation set in hospital mortality

within 30 days prediction on RAD.

(a) BK-DDN (b) AK-DDN

Fig. 9: loss and AUC of validation set in hospital mortality

within year days prediction on RAD.

of AK-DDN is the highest, which achieves 87.3% on the

NURSING dataset and 88% on the RAD dataset.

In the task of hospital mortality prediction within 30 days,

the performances of the BK-DDN are 82.1% on the NURSING

dataset and 86.7% on the RAD dataset, which shows its

strengths among the baselines. What’s more, the AK-DDN

achieves the best of all the models and achieves 85.7% on

the NURSING dataset (3% higher than the best of baselines)

and 87.3% on the RAD dataset (2% higher than the best of

baselines).

In the task of hospital mortality prediction with a year, the

performances of BK-DDN are 80.5% on the NURSING (about

1% higher than that of Text CNN) and 85.6% on the RAD

dataset (about 2% than that of the Concept CNN). In addition,

the performances of AK-DDN are the best among the proposed

models with an AUC of 82% on the NURSING dataset and

86.2% on the RAD dataset.

Compared the performances among Combined LDA with

SVM, LDA based word SVM and LDA based concept SVM,

the performance of combined LDA with SVM is higher than

the other two baselines which suggests the combination of

both words and concepts is promising and valuable. And the

metrics(loss,AUC) during the training process of the three

tasks are showed in Figure 7, 8, 9.

VIII. DISCUSSION

To further explore the insights of our AK-DDN, we analyze

the results of the RAD dataset. We show the power of our

proposed model in the following ways: word and concept

embedding analysis, patient embedding analysis.
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A. Important Words and Concepts

In this section, we discuss word and concept embeddings

trained in AK-DDN. Note that attention mechanism is utilized

to generate both word-level text information and concept-

level text information. Consider that in the generation part of

concept based interaction generation in Section V-1 and word

based interaction generation in Section V-2, each pair of the

concepts and words per note is weighted by sorting the weights

of the pairs. In order to further explore the power of attention

mechanism, we simply take in hospital mortality prediction as

our condition and select one positive sample (die in hospital)

and one negative sample (not die in hospital) to visualize the

weights of pairs.

Compared with Table VII and Table IX, consider that in

Section V-2, we use each concept as a query to compute

concept related word weights. From the above tables, we can

dive into the insights of the attention mechanism. When it

comes to the positive condition, the pairs are more related to

disease and the status of disease(increased), this indicates that

the patient’s condition is getting worse. However, in the neg-

ative condition(not die in hospital), the pairs are more related

with diseases and measurements(tube), this may indicate that

some cure measurements are valid and the patient’s condition

is getting better.

Compared with Table VIII and Table X, the difference is

that in the positive situation, the most important concepts and

words are more related to diseases while in the other situation,

those concepts act differently.

TABLE VII: important pairs in word based interaction (posi-

tive case).

Concept Concept Definition Word Weight
C1527391 Anterior thoracic region increased 0.1047
C0018802 Congestive heart failure increased 0.0801
C0234438 Whiteout pulmonary 0.0779
C0008031 Chest Pain increased 0.0553
C0234438 Whiteout ap 0.0534
C0549646 chest disorders increased 0.0431
C0034063 Pulmonary Edema increased 0.0431
C0234438 Whiteout lung 0.0410
C0747635 Bilateral pleural effusion increased 0.0308
C0013404 Dyspnea increased 0.0248

TABLE VIII: important pairs in concept based interaction

(positive case).

Concept Concept Definition Word Weight
C0234438 Whiteout pulmonary 0.1304
C0013404 Dyspnea pulmonary 0.1296
C0234438 Whiteout left 0.1231
C0242184 Hypoxia pulmonary 0.0981
C0242184 Hypoxia left 0.0927
C0013404 Dyspnea pleural 0.0751
C0242184 Hypoxia reason 0.0717
C0013404 Dyspnea lung 0.0683
C0596790 interstitial pulmonary 0.0650

TABLE IX: important pairs in word based interaction (negative

case).

Concept Concept Definition Word Weight
C0175730 biomedical tube device tube 0.2304
C0596790 interstitial tube 0.1538
C0242184 Hypoxia tube 0.1119
C0185115 Extraction chest 0.0891
C0336630 Endotracheal tube tube 0.0888
C0015252 removal technique chest 0.0882
C0013404 Dyspnea tube 0.0869
C0332448 Infiltration tube 0.0836
C0003873 Rheumatoid Arthritis tube 0.0638
C0085678 Nasogastric tube tube 0.0628

TABLE X: important pairs in concept based interaction (neg-

ative case).

Concept Concept Definition Word Weight
C0015252 removal technique enhancement 0.0723
C0015252 removal technique axial 0.0656
C0728940 Excision enhancement 0.0641
C0015252 removal technique frontal 0.0587
C0728940 Excision axial 0.0575
C0015252 removal technique neck 0.0572
C0015252 removal technique resection 0.0558
C0728940 Excision frontal 0.0550
C0728940 Excision resection 0.0499
C0015252 removal technique post 0.0439

B. Patient Embedding

In this section, we analyze the patient embedding in the

hidden layer of our AK-DDN. As illustrated in Section V,

the final representation is composed of two parts: one is

generated from word based interaction and the other from

the concept based interaction. Therefore, for each patient

in the dataset, three different types of information can be

extracted from the output of the hidden layer in AK-DDN:

word-level patient representation, concept-level representation,

and combined patient representation. Then, we use T-SNE to

visualize the first 1000 patients’ representation.

Figures 10, 11, and 12 show the results of our AK-DDN

in the three tasks: in-hospital mortality prediction, hospital

mortality prediction within 30 days and hospital mortality

prediction within a year. The left figure is the visualization

of word-level patient representation, the middle is the visual-

ization of concept-level patient representation and the right

is the combined patient representation. Compared with the

three pictures in Figures 10, 11, and 12, The major trends

of the word-level and concept-level patient representations are

aggregating in different directions which suggests both of the

two representations model the patients in different semantic

level. What’s more, we can conclude from the pictures that

points in the first two sub-figures do not show an action of

clustering while patients’ joint representations are similar in

low dimension and tend to cluster in a direction. Therefore, the

combination of concepts and text is useful to observe common

information on the same label.
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(a) word-level patient representation (b) concept-level patient representation (c) joint patient representation

Fig. 10: in hospital mortality prediction: Visualization of first 1000 patients’ representation using T-SNE: Points marked with

“×” and red color are positive labels and the others are negative labels.

(a) word-level patient representation (b) concept-level patient representation (c) joint patient representation

Fig. 11: hospital mortality prediction within 30 days: Visualization of first 1000 patients’ representation using T-SNE: Points

marked with “×” and red color are positive labels and the others are negative labels.

(a) word-level patient representation (b) concept-level patient representation (c) joint patient representation

Fig. 12: hospital mortality prediction within a year: Visualization of first 1000 patients’ representation using T-SNE: Points

marked with “×” and red color are positive labels and the others are negative labels.

IX. CONCLUSION

In this paper, we address the text-based mortality predic-

tion problem by fusing the feature construction stage and

model training stage into an unified framework. We propose

two novel Knowledge-aware Deep Dual Networks, which

combine the word-level representation with the concept-level

representation for prediction and further incorporate the co-

attention mechanism to make the two representations learn

from each other. Experimental results on the two real-word

datasets show that the proposed models outperform the state-

of-the-art approaches and verify the benefit of the co-attention

mechanism.
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