arXiv:2305.12524v2 [cs.CL] 23 May 2023

TheoremQA: A Theorem-driven Question Answering Dataset

*Wenhu Chen, 'Ming Yin, *Max Ku, *Pan Lu, *Yixin Wan,
’Xueguang Ma, '] ianyu Xu, 'Xinyi Wang, ‘Tony Xia
University of Waterloo®

University of California, Santa Barbara”

University of California, Los Angeles’

Abstract

The recent LLMs like GPT-4 and PaLM-2 have
made tremendous progress in solving funda-
mental math problems like GSM8K by achiev-
ing over 90% accuracy. However, their capa-
bilities to solve more challenging math prob-
lems which require domain-specific knowledge
(i.e. theorem) have yet to be investigated. In
this paper, we introduce TheoremQA, the first
theorem-driven question-answering dataset de-
signed to evaluate Al models’ capabilities to
apply theorems to solve challenging science
problems. TheoremQA is curated by domain
experts containing 800 high-quality questions
covering 350 theorems' from Math, Physics,
EE&CS, and Finance. We evaluate a wide spec-
trum of 16 large language and code models with
different prompting strategies like Chain-of-
Thoughts and Program-of-Thoughts. We found
that GPT-4’s capabilities to solve these prob-
lems are unparalleled, achieving an accuracy
of 51% with Program-of-Thoughts Prompting.
All the existing open-sourced models are be-
low 15%, barely surpassing the random-guess
baseline. Given the diversity and broad cover-
age of TheoremQA, we believe it can be used
as a better benchmark to evaluate LLMs’ ca-
pabilities to solve challenging science prob-
lems. The data and code are released in
https://github.com/wenhuchen/TheoremQA.

1 Introduction

A long-standing goal of Al systems is to help hu-
man beings solve challenging problems, especially
more domain-specific problems. To benchmark
the progress towards this goal, researchers pro-
pose to evaluate Al systems’ performance on dif-
ferent math word problem (WMP) datasets. In
recent years, there has been a plethora of WMP
datasets, which we include in Table 1. Most of

* Authors ordered by contribution. Corresponding author
email: wenhuchen@uwaterloo.ca

1e.g. Taylor’s theorem, Lagrange’s theorem, Huffman
coding, Quantum Theorem, Elasticity Theorem, etc

these datasets are meant for fundamental questions
aimed for Grade 1-12 students on a narrow sub-
ject. On the other hand, these datasets do not in-
volve much domain-specific knowledge, aka theo-
rem. Due to these two deficiencies, we believe that
these datasets are not ideal to benchmark the exist-
ing powerful LLMs (Brown et al., 2020; Tamkin
et al., 2022; Chen et al., 2021b; Chowdhery et al.,
2022; Hoffmann et al., 2022; Taylor et al., 2022)
due to their simplicity. In fact, on the popular
GSMSK dataset (Cobbe et al., 2021), GPT-4 (Ope-
nAl, 2023) and PaLM-2 (Google, 2023) both al-
ready achieved 92% accuracy. Similarly, we tested
GPT-4 (OpenAl, 2023) on the subsets of several
other listed datasets in Table 1 and observed 90+%
accuracy in most cases. The only exception is
MATH (Hendrycks et al., 2021) containing high-
school math competition problems with SoTA per-
formance around 50% (Zheng et al., 2023). How-
ever, MATH (Hendrycks et al., 2021) is focused on
math skills rather than theorem.

In this paper, we propose the first theorem-
driven QA dataset built on university-level theo-
rems across Math, Physics, EE&CS and Finance.
The whole collection process takes two steps: (1)
we first enumerate roughly 400 theorems in differ-
ent subfields like algebra, number theory, graph
theory, information theory, etc, (2) we ask domain
experts to search for questions regarding these the-
orems from different sources like Internet and Text-
books. The domain experts will adjust these ques-
tions to ensure the answers follow the desired for-
mat for the ease of automatic evaluation. Through
the careful construction process, we collected 800
high-quality question-theorem-answer triples as
our release version.

We evaluate a wide spectrum of instruction-
finetuned language and code models including
GPT (Brown et al., 2020), Claude (Bai et al.,
2022), LLaMA (Touvron et al., 2023), Pythia (Bi-
derman et al., 2023), CodeGen (Nijkamp et al.,

r 1 Taylor Expansion
m ‘ a : Stoke’s Theorem Language
> conere > :Lebesgue Theorem >
¢ Huffman Coding) > &
Prompt ; A\ ‘ ‘n_' Jensen's Alpha Program
Questions . Language Models Theorem Thought Answer Verifier
Figure 1: The overview of TheoremQA and the prompting strategies adopted.

Dataset Domain Level Source Theorem
DRAW (Upadhyay and Chang, 2015) Algebra Elementary School Generated -
MAWPS (Koncel-Kedziorski et al., 2016) Arithmetic Elementary School Generated -
DRAWI1K (Upadhyay and Chang, 2017) Algebra Elementary School Generated -
ASDiv (Miao et al., 2020) Arithm/Algebra Elementary School Internet -
SVAMP (Patel et al., 2021a) Arithm/Algebra Elementary School ASDiv -
Math23K (Wang et al., 2017) Algebra Elementary School Internet -
TabMWP (Lu et al., 2023b) Arithm/Algebra Elem./Middle School Textbooks NO
GSMBS8K (Cobbe et al., 2021) Arithm/Algebra Middle School Annotated NO
GEOS (Seo et al., 2015) Geometry Middle School SAT NO
Geometry3K (Lu et al., 2021) Geometry Middle/High School Textbooks NO
GeoQA (Chen et al., 2021a) Geometry Middle/High School Exam NO
UniGeo (Chen et al., 2022a) Geometry Middle/High School Textbooks NO
ScienceQA (Lu et al., 2022) Science Middle/High School Textbooks NO
MATH (Hendrycks et al., 2021) Math High School Competition YES
AQuA (Ling et al., 2017) Arithm/Algebra University GMAT/GRE NO
MathQA (Amini et al., 2019) Arithm/Algebra University AQuA NO
MathQA-Python (Austin et al., 2021) Arithm/Algebra University AQuA NO
FinQA (Chen et al., 2021c) Finance University CrowdSource NO
TAT-QA (Zhu et al., 2021) Finance University CrowdSource NO
TheoremQA (Ours) STEM University Internet+Expert 350+

Table 1: List of existing Math and STEM QA datasets.

2022), GLM (Zeng et al., 2022), StarCoder (Li
et al., 2023), and CodeT5+ (Wang et al., 2023)
on our dataset. We adopt two prompting methods:
Chain-of-Thoughts (CoT) (Wei et al., 2022b) and
Program-of-Thoughs (PoT) (Chen et al., 2022b) to
prompt the large language models. We also inves-
tigate how to infuse the theorem into the thought
process of LLMs and how to present the multi-
modal inputs to the LLMs.

In the course of our experiments, several no-
table observations were made. First, GPT-4 (Ope-
nAl, 2023) significantly outperformed all existing
models, reaching an accuracy level of 51% when
combined with Program-of-Thoughts prompting.
Trailing behind GPT-4, the second most effective
model was ChatGPT, achieving an accuracy of 35%
through the same prompting method. Additionally,
our human evaluation determined that the majority
of GPT-4’s errors were relatively minor and could
be easily rectified by expert intervention. This
suggests GPT-4’s potential for even higher perfor-
mance with minimal human intervention. Secondly,
we found that all open-source, instruction-tuned

language and code models scored below 15% in
accuracy, barely exceeding the random guess base-
line of 10%. This stark gap between GPT and open-
source models suggests that further enhancement
strategies, such as science-focused pre-training or
fine-tuning, should be considered to narrow the
performance disparity. Thirdly, we explored the po-
tential to do theorem-augmented generation. How-
ever, the simple strategy of concatenation did not
yield a significant improvement. We surmise that a
more complex integration strategy may be needed
to realize higher gains. Lastly, we examined the per-
formance of various multi-modal instruction-tuned
models on the multimodal subset of the TheoremQA
dataset. Surprisingly, these models did not demon-
strate significant performance gains over their text-
only counterparts, indicating room for future im-
provement in multimodal model performance.

To sum up, our contributions are three folds:

* We propose the first theorem-driven question-
answering dataset to understand LLMs’ capa-
bilities to apply science theorems.

* We comprehensively evaluate a wide spectrum
of 16 LLMs on TheoremQA.

* We perform different analyses in the theorem
integration and multimodal understanding as-
pects to provide detailed insights.

2 Related Work

2.1 Math Word Problems

Mathematical reasoning skills are crucial for
general-purpose intelligent systems, garnering sig-
nificant interest from the research community. In
the past, studies have explored the ability of NLP
models to solve arithmetic and algebraic prob-
lems (Hosseini et al., 2014; Koncel-Kedziorski
et al., 2015; Roy and Roth, 2015; Ling et al., 2017).
More recently, researchers have introduced increas-
ingly challenging datasets (Saxton et al., 2019;
Miao et al., 2020; Amini et al., 2019; Hendrycks
et al., 2021; Patel et al., 2021b) aimed at enhanc-
ing difficulty, diversity, and adversarial robustness.
LiLA (Mishra et al., 2022) proposes to assemble
a vast collection of mathematical datasets into a
single, unified dataset. LiLA also annotates Python
programs as target outputs for solving mathemati-
cal problems. However, the existing datasets were
mostly focused on grade school simple mathemat-
ics. To further investigate the LLMs’ capabilities to
assist humans to solve challenging math problems,
we propose TheoremQA as the first benchmark to
enable research in this direction.

2.2 Large Language Models

In recent years, there has been a surge of research
and development in the area of large language
models (LLMs) that have significantly advanced
the field of natural language processing. GPT-
3 (Brown et al., 2020) demonstrated a strong ca-
pability to perform few-shot predictions, where
the model is given a description of the task in
natural language with few examples. By using
human-feedback reinforcement learning, Instruct-
GPT (Ouyang et al., 2022) has shown its unprece-
dented capabilities to follow human instructions.
Scaling model size, data, and computing are cru-
cial to enable this learning ability. Later, Rae
et al. (2021); Chowdhery et al. (2022); Zhang et al.
(2022); Touvron et al. (2023); Chen et al. (2021b)
have proposed to train different types of LLMs with
different training recipes. The capability to follow
few-shot exemplars to solve unseen tasks is not

existent on smaller LMs, but only emerge as the
model scales up (Wei et al., 2022a). More recently,
GPT-4 (OpenAl, 2023) shows tremendous progress
on lots of complex reasoning tasks spanning math-
ematics, coding, vision, medicine, law, psychology
and more. Bubeck et al. (2023) shows that GPT-4
is already demonstrating more general intelligence
than previous Al models. To further validate GPT-
4’s capability to solve challenging reasoning tasks,
we propose TheoremQA as the new benchmark to
further understand LLMs’ upper limit.

2.3 Reasoning with Large Language Model

To better unleash large language models’ capabil-
ities to solve complex reasoning tasks. Chain-of-
Thought Prompting (Wei et al., 2022b; Kojima
et al., 2022; Wang et al., 2022) was proposed,
which aims at prompting the large language models
to generate the ‘thought process’ before outputting
the answer. Later on, several other works (Drozdov
et al., 2022; Zhou et al., 2022; Nye et al., 2021)
also propose different approaches to utilize LLMs
to solve reasoning tasks by allowing intermediate
steps. Our method can be seen as an extension to
CoT by leveraging an extra step of symbolic ex-
ecution. Another line of work (Gao et al., 2022;
Chen et al., 2022b) was proposed to adopt Python
programs as the demonstration for the ‘thought
process’ to solve different reasoning tasks.

3 Dataset
Our dataset collection pipeline contains two steps:

Theorem Enumeration Our aim was to encom-
pass a wide range of theorems. To this end, we be-
gan by prompting Large Language Models (LLMs),
specifically GPT-4 (OpenAl, 2023), to enumerate
popular subfields in Mathematics, Physics, Finance,
and Electrical Engineering & Computer Science.
The covered subfields are listed in Figure 4. Sub-
sequently, we prompted GPT-4 to propose plausi-
ble university-level theorems relevant to these sub-
fields. For instance, within the *Calculus’ subfield,
GPT-4 might suggest the ’Intermediate Value The-
orem’, 'Rolle’s Theorem’, and so on. After gath-
ering an extensive list of theorems, we assembled
a team of domain experts (holders of Masters and
PhDs in Statistics, Electrical Engineering, Com-
puter Science, and Finance) to refine the theorem
inventory and supplement any omitted theorems.
Ultimately, we collected approximately 400 theo-
rems, encapsulating a diverse range of topics within

these fields. We then delegated these theorems to
nine domain experts, instructing them to locate
question/answer pairs from varied sources. During
the annotation process, a small number of theorems
were discarded due to their evaluation complexity.

Question Annotation Our problems were
sourced from websites, books, or devised by the
experts themselves. One challenge we encountered
was the potential for questions found online to
have been included in the training data. To mitigate
this ’data contamination’ issue, we encouraged
domain experts to modify these questions. Another
challenge arose from questions with answers in
symbolic form, matrix form, figure form, etc.
These presented significant obstacles for our
automatic evaluation. To overcome this, we
instructed domain experts to alter the question so
the answer would be limited to the following forms:
(1) integer, (2) float, (3) list of integers/floats, (4)
boolean, and (5) multiple-choice options. For
instance, if the original question concerned a
matrix, we would revise it to ask about the trace of
the answer matrix. This modification significantly
streamlined the evaluation process. An example of
this can be found in Figure 2.

Dataset Statistics Finally, we collected a total
of 800 questions over 354 theorems. Specifically,
there are 199 Math theorems, 52 Physics theorems,
55 Finance theorems, and 48 CS&EE theorems.
There are 442 Math questions, 146 CS&EE ques-
tions, 131 physics questions, and 81 Finance ques-
tions. We show the answer-type distribution in Fig-
ure 3. To further enhance the multimodality aspect
of TheoremQA, we also include 51 questions with
image input (diagrams), where the model needs to
understand the visual input to answer questions.

The majority of the questions in TheoremQA have
float and integer as the answers, which is more
realistic than the existing multi-choice datasets like
ScienceQA (Lu et al., 2022) or AQuA QA (Ling
et al., 2017). Therefore, the models are unlikely to
take shortcuts to achieve high accuracy.

Human-Level Performance To provide a rough
but informative estimate of human-level perfor-
mance. We randomly select 20 questions and as-
sign these questions to the 4 Math&CS undergrad-
uate students (average GPA) who have taken the
required courses regarding these questions. The
participants are given 24 hours with internet access
to solve these questions. The four undergraduate

Question: Please wuse the Stoke’s
therorem to evaluate [[,curlF - dif where
F=2%— 3:1:y_',7+ :r:3y3E and S is the part of
z = 5 — 2% — 3? above the plane z=1. S is
oriented upwards.

Stoke’s Theorem: Let S be an oriented
smooth surface that is bounded by a simple,
closed, smooth boundary curve C with
positive orientation. Also let F be a vector.
We can compute the integral as follows:

/ﬁvd:?:f]curlﬁ-dg
(o} S

L 4

Answer: O, Type: Float

Quesiton: Let W(t) be the standard
Brownian motion. Find the probability of
PW()+W(2) > 2).

Winer’s Process The Wiener process W;
is characterised by the following properties:
W has independent increment. For every
t > 0, the future increment W;,, — W,
are independent from the past W,., W
has Gaussian increments, W;,, — W, has
Gaussian distribution N(0, u).

4

Answer: 0.186, Type: Float

Figure 2: Examples from TheoremQA. The first question
requires the usage of Stoke’s theorem to transform the
double integral into a line integral. The second question
requires knowing the properties of Wiener’s process.

students achieve 12/20, 15/20, 18/20, and 19/20
scores on these randomly sampled questions. From
this experiment, we are more confident that an
expert-level performance should be 100%.

4 Method

Our method for addressing these demanding ques-
tions in the TheoremQA dataset is comprised of sev-
eral distinct modules, as outlined in Figure 1:

Prompting We utilize two established prompting
strategies:

* Chain-of-Thought Prompting (Wei et al.,
2022b): This strategy prompts the language
model to initially generate a step-by-step
thought process, eventually leading to the final
answer.

* Program-of-Thought Prompting (Chen et al.,
2022b; Gao et al.,, 2022): This strategy
prompts the language model to progressively

float

— 01 | .
option
list

bool

integer

Figure 3: Answer type distribution in TheoremQA.

generate a program. The final answer is then
derived by executing this program with an ex-
ecutor.

By delegating computational tasks to an external ex-
ecutor, the problem-solving process is considerably
enhanced in its reliability. This improvement re-
sults in remarkable advancements in existing math
datasets being reported in (Chen et al., 2022b).

Answer Extraction We observed that parsing
the output from Large Language Models (LLMs)
can be challenging due to two main issues: (1) The
answer is often embedded within a sentence, mak-
ing it difficult to extract using regular expressions,
and (2) The answer may not be normalized, such as
pi/ 3’ or’2*10 - e’, which complicates comparison
with the ground truth. To tackle these problems, we
initially employ ChatGPT to identify the answer
span within the model’s output, then forward this
string to WolframAlpha (Inc.) for normalization
into a float, integer, or list.

Theorem Augmentation We explored the po-
tential of enhancing large language models with
retrieved theorem descriptions to assess their effect
on performance. One approach is to retrieve de-
scriptions of the given theorems from the Internet
to supplement the LLMs’ output. Another exper-
iment involved prompting GPT-4 to generate text
descriptions of the theorem, which are then used as
an additional augmentation signal.

Multimodal Input A small portion of our data
(50 instances) includes images, such as diagrams,
as supplemental input, particularly in geometry
questions. Since current LLMs don’t support such
multimodal inputs, we propose a solution: to em-
ploy captions in a manner similar to Chameleon(Lu
et al., 2023a). These captions describe the image

and are then appended to the LLMs’ output as an
additional signal.

S Experiments

5.1 Model Descriptions

In our experiments, we mainly investigate the fol-
lowing models:

* GPT3/3.5/ChatGPT/GPT4: These are
instruction-tuned models from OpenAIz.

e Calude-v1: This is an instruction-tuned mod-
els from AnthropicAI3.

* Alpaca-13B: This model is based on the
LLaMA (Touvron et al., 2023). Alapaca is
instruction-tuned by the 52K data generated
from GPT-4.

* Vicuna-13B: This model is based on the
LLaMA (Touvron et al., 2023). Vicuna is
instruction-tuned by the 100K ShareGPT data
generated by different GPT-based models.

* OpenAssistant-12B: This model is based on
Pythia (Biderman et al., 2023). The model is
instruction-tuned by OpenAssistant data”.

e MOSS-instruct-16B: This model is based on
CodeGen (Nijkamp et al., 2022), which is fur-
ther instruction-tuned with instruction follow-
ing dataset distilled from GPT.’.

e StarChat-16B: This model is based on Star-
Coder (Li et al., 2023). StartChat is being
instruction-tuned on OpenAssistant data® and
ShareGPT data.

¢ InstructCodeT5+: This model is based on
CodeT5+ (Wang et al., 2023). Instruct-
CodeT5+ is further insturction-tuned on Code
Alpaca data’ to follow instructions.

5.2 Main Results

We demonstrate our main results on Table 2. We
will summarize different findings in the following:

2 .
https://openai.com/

3https ://www.anthropic.com/index/introducing-claude

4 . .
https://open-assistant.io/

5https ://txsun1997.github.io/blogs/moss.html

6https ://open-assistant.io/

7https ://github.com/sahil280114/codealpaca

Mathematics Physics Finance
Calculus 103 | Kinetics 30 [Economics 22
Combinatorics 57 |Electromagnetism 21 [Quantitive methods 14
Algebra 52| Atomic physics 11 | Derivatives 14
Mathematical analysis 42| Wave 8| Fixed income 1
Number theory 29| Optics 8| management 10
Geometry 27| Condensed matter 8|Investments 10
Numerical analysis 24| Particle 6| Total 81
Statistics 24 | Statistical physics 6
Complex analysis 21 |Relativity 7 CS & EE
Probability theory 19| Celestial mechanics 6 | Signal processing 47
Stochastic process 16 [Thermodynamics 5| Graph theory 34
Group theory 11| Quantum 5| Information theory 29
Functional analysis 10| Classic mechanics 5| Computer networking 23
Real analysis 7 | Fluid mechanics 5| Machine learning 13
Total 442 | Total 131 | Total 146

Figure 4: Subfields of TheoremQA under Math, Physics, Engineering, and Finance.

Closed-source Models For GPT-3 (text-davinci-
002) and GPT-3.5 model, since these two models
are not Chat-based models, we need to demonstrate
one example ensure to help them generate outputs
of the desired format. With CoT prompting, GPT-3
(text-davinci-002) and GPT-3.5 models are only
achieving 16.6% and 22.8% accuracy. By adopt-
ing program as the intermediate reasoning form,
both models can gain reasonable improvements.
For Claude-v1, we found that it is matching the
performance of GPT-3.5. ChatGPT outperform
GPT-3.5 and Claude-v1 significantly by 8%, which
indicates ChatGPT’s capabilities to perform com-
plex numerical reasoning. GPT-4 is the strongest
model being evaluated, which beats all the rest
models by a huge margin. With Chain-of-Thoughts
prompting, GPT-4 can outperform ChatGPT by
13%. With Program-of-Thoughts prompting, GPT-
4 is able to outperform ChatGPT by 16%. Though
some other models have shown to match GPT-4
on simple tasks, GPT-4’s capability to solve really
challenging tasks seems unparalleled.

Open-source Models For the open-source mod-
els, we found that their performance is much be-
hind. To better understand their accuracy, we also
provide the random-guess baseline of 10%. We
test both prompting strategies, however, their re-
sults consistently lie in the range of 10-14%. The
results indicate that these open-source LMs are still
struggling with more complex mathematical rea-
soning tasks in TheoremQA. Given that ChatGPT of
a similar size is able to achieve much higher per-
formance, we believe the parameter size is not the

only cause. There is still a significant amount of ef-
fort during pre-training or supervised fine-tuning to
instill enough science knowledge into the models’
parameters to close the gap.

Program of Thoughts Analysis From Table 2,
we observe that PoT brings consistent improvement
over CoT on GPT-* models. Different GPT-* mod-
els can normally yield a gain of 5-8% accuracy. In
contrast, Claude-v1 and StarChat are almost obtain-
ing the same accuracy. To better analyze where the
gains are coming from, we plot Figure 5 to under-
stand how many of generated Python programs are
actually ‘executable’. As can be seen, both Star-
Chat and CodeT5+ are having trouble generating
‘runnable’ programs with only 40% programs being
executable. Claude-v1 is able to increase the valid-
ity of the generated programs to 60%. In contrast,
GPT3.5 and ChatGPT can further increase the ratio
to around 80%. GPT-4 is extremely accurate in
generating programs, where 92% of the generated
programs are runnable. Such a high executable ra-
tio explains why the gain brought to GPT-* model
is much higher than Claude-v1 and StarChat.

5.3 Additional Result

Theorem Augmentation We also investigate
whether feeding theorem as an additional text con-
dition would help the model better solve the prob-
lem. Specifically, we ask GPT-4 to generate a
paragraph to describe the theorem, which we post-
processed to ensure correctness. We feed the the-
orem in the prompt to different language models
to see the performance change and plot our find-

Model | Integer Float Option List Bool | Math CS&EE Physics Finance | All
Random Guess | o0 0 28.9 0 65.5 | 10.0 24.7 0 49 | 105
Chain of Thoughts (CoT)

GPT-3 11.6 11.7 27.8 6.8 46.6 | 158 342 2.3 12.3 16.6
GPT-3.5 13.0 14.3 50.0 13.7 69.8 | 22.6 36.3 7.6 23.5 22.8
ChatGPT 324 22.3 50.0 20.5 552 | 31.0 41.1 16.8 28.4 30.2
GPT-4 39.8 36.7 50.0 356 763 | 432 50.7 30.5 51.9 43.4
Claude-v1 18.1 194 27.8 151 612 | 21.7 42.5 13.7 28.4 249
Alpaca (13B) 11.1 6.9 27.8 2.7 45.7 12.9 27.4 3.8 9.9 13.5
Vicuna (13B) 8.8 6.9 16.7 2.7 457 12.2 24.0 3.1 12.3 12.9
OpenAssistant (12B) 8.3 5.0 222 1.4 379 | 102 25.0 0 4.9 10.7
MOSS (16B) 8.8 54 24.2 24 442 | 113 28.4 1.6 8.9 12.2
StarChat (16B) 7.9 4.9 22.3 1.9 441 10.7 23.5 0.6 6.8 11.6
Program of Thoughts (PoT)
GPT-3 17.1 15.9 222 9.6 49.1 | 233 25.4 8.4 17.3 20.6
GPT-3.5 23.6 19.9 50.0 219 612 | 26.7 41.1 14.5 30.9 27.8
ChatGPT 31.0 35.0 38.9 219 543 35.7 35.6 26.7 494 35.6
GPT-4 44.0 50.4 61.1 384 759 | 509 50.0 45.8 66.7 51.5
Claude-v1 17.1 21.8 33.3 6.9 62.5 23.1 37.5 17.1 28.4 25.9
StarChat (16B) 7.7 6.1 0.0 3.0 435 13.6 17.6 5.1 5.1 11.3
InstructCodeT5+ (16B) 8.9 6.3 0.0 6.9 452 | 138 17.9 4.2 5.1 11.6

Table 2: Results for CoT and PoT prompting on TheoremQA. We report the accuracy over different fine-grained

question types and scientific fields.

0.92

0.78 0.82

0.6
H 0.4 0.36
1 =

!
PP 72O T cqand® O T

Figure 5: Ratio of Executable Python Program of differ-
ent models with PoT prompting.

ings in Table 3. For all the evaluated scenarios, we
found that the improvement is limited to within 1%.
Unlike the Text or KB knowledge, theorem knowl-
edge is more abstract and symbolic, simply con-
catenating the theorem definition is not enough. We
believe a more sophisticated augmentation scheme
is needed to truly help the model understand and
apply the theorems to solve problems.

Multimodal Questions Our aim was to assess
how effectively the current method could tackle
multimodal questions (those with image inputs) in
the TheoremQA dataset. An example is illustrated
in Figure 6, where an image is converted into ’cap-
tions’ by BLIP (Li et al., 2022). We graphed the
results from over 50 multimodal question subsets
in Figure 7. Notably, this subset posed substantial
challenges; none of the models were able to achieve
an accuracy rate of 10%. This is primarily due to

Model | Method Theorem All
ChatGPT CoT - 30.2
ChatGPT CoT + 30.8
Claude-v1 CoT - 249
Claude-v1 CoT + 254
ChatGPT PoT - 35.6
ChatGPT PoT + 35.8
Alpaca-13B CoT - 13.5
Alpaca-13B CoT + 14.2

Table 3: Results for CoT and PoT prompting with addi-
tional theorem conditions.

information loss during the captioning process.

In light of this, we conducted further evalua-
tions on two multimodal instruction-tuned models,
LLaVA-13B (Liu et al., 2023) and VisualGLM-
6B (Zeng et al., 2022)8. These models utilize a
visual encoder (either CLIP (Radford et al., 2021)
or BLIP (Li et al., 2022)) to encode image input,
which is then integrated with language models for
multimodal conversation. However, these models
demonstrated performance similar to their text-only
equivalent, Alpaca, with the addition of a visual
encoder not significantly enhancing the results. We
hypothesize that the current visual encoding mod-
ules may not be suited for representing these dia-
grammatic images, resulting in these less than ideal

*https://github.com/THUDM)/Visual GLM-6B

Fig.Qla

Fig. Qlb

Question: Are the circuits shown in Fig. Qla and Fig.
Q1b are identical in terms of the Tranfer functions.

BLIP Caption: a diagram of a block diagram with a
block diagram and a block diagram.

Figure 6: An example of Multimodal question.

9.3

Ps\\?{‘xcz\goﬁ\c") \)\}\JP* C\ﬁ"&e (‘;‘?"'ﬁ5 Cx\a\c’?(‘ GYXA

Figure 7: Accuracy on the Multimodal Question Subset

outcomes. We believe these multimodal questions
remain a challenge for the research community,
and we eagerly anticipate further advancements in
addressing these multimodal scientific questions.

Case Study We list a few successful and fail-
ure examples generated by GPT-4 in Figure 8
to do side-by-side comaprison between chain-
of-thoughts prompting and program-of-thoughts
prompting. In the first example, the questions is
regarding ‘orthogonal projection theorem’. As can
be seen, Chain-of-Thoughts prompting requires a
very long paragraph to generate the results. We
prompted GPT-4 a few times with the same input
and the results seems unstable. Sometimes the
model will make tiny computation mistakes in the
middle to derive the wrong answer. In contrast,
the program solution is brief and concise, which
leads to rather stable outputs. For the second ex-
ample, the computation requires ‘for loop’ to it-
eratively compute delta values for Riemann Sum.
We found that such problems are also more natural
for programs to solve. Through these examples,
we can see GPT-4’s unprecedented capabilities to
solve these difficult math problems even without
any demonstration or hints.

6 Conclusion

In this paper, we propose the first theorem-driven
science question-answering dataset and evaluate
different LLMs on it. Though GPT-4 can achieve
strong performance on our new dataset, the existing

open-source LLMs are still struggling to achieve
reasonable performance. We conjecture it is essen-
tial to leverage more science-related pre-training
or fine-tuning to close the gap. On the hand, we
found that the multimodal science questions are
still extremely challenging for the existing visual
LLMs. We believe more specialized visual encod-
ing models are needed to better represent diagrams
in these science questions.

References

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. Mathqa: Towards interpretable math
word problem solving with operation-based for-
malisms. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2357-2367.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini,
Cameron McKinnon, et al. 2022. Constitutional
ai: Harmlessness from ai feedback. arXiv preprint
arXiv:2212.08073.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, et al. 2023. Pythia: A suite
for analyzing large language models across training
and scaling. arXiv preprint arXiv:2304.01373.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

Jiagi Chen, Tong Li, Jinghui Qin, Pan Lu, Liang Lin,
Chongyu Chen, and Xiaodan Liang. 2022a. UniGeo:
Unifying geometry logical reasoning via reformu-
lating mathematical expression. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3313-3323, Abu

https://aclanthology.org/2022.emnlp-main.218
https://aclanthology.org/2022.emnlp-main.218
https://aclanthology.org/2022.emnlp-main.218

duestlon Find the orthog;hal projectior;—bf [9, 0 0, 0]"ont0 the ;Jt;space of R"4 spanned by [2,
2,1,0]and[2,2 0, 1].

The orthogonal projection of a vector onto a subspace W spanned by a
set of vectors {v1, v2, ..., vn} is given by the sum of the projections onto
each of these vectors.

In your case, the vectoris v=9e_1 =[9, 0, 0, 0] and the subspace W is def solve():

spanned byu=1[2,2,1,0landw=1[-2, 2, 0, 1]. import numpy as np
The projection of v onto u is given by:

proj_u(v) = ((veu) / llullA2) * u

where "" denotes the dot product, and llull is the norm of u.
And the projection of v onto w is given by:

proj_w(v) = ((vew) / lwllA2) * w

Define the given vectors
el = np.array([1, 0, 0, 0))
v1 = np.array([2, 2, 1, 0])

The total projection onto the subspace W is then given by the sum of v2 = np.array([-2, 2, 0, 1])

these individual projections:

proj_W(v) = proj_u(v) + proj_w(v) # Calculate the orthogonal projection

Now let's compute these values: A = np.column_stack((v1, v2)) :
The dot product v-u=(9"2) +(0"2) + (0" 1) + (0" 0) = 18 proj_matrix = A @ np.linalg.inviAT @ A) @ AT

The norm llull"2 = (272 + 22 + 12 + 072) =9
So, proj_u(v) = ((18) /9) *[2,2,1,0]=[4, 4, 2, 0]
Similarly, the dot product vew =(9*-2) + (0*2) +(0*0) + (0* 1) =-18

proj_e1 = proj_matrix @ (9 * e1)

The norm lIWIIA2 = (-2/2 + 242 + 042 + 142) = 9 return proj_e1.tolist()
So, proj_w(v) = ((-18) /9) *[-2, 2,0, 1] = [4, -4, 0, -2]
The total projection onto the subspace W is then given by the sum of print(solve()

these individual projections:
proj_W(v) = proj_u(v) + proj_w(v) =[4, 4,2,0] +[4,-4,0,-2]=(8,0, 2, -2]
So, the orthogonal projection of 9e_1 onto the subspace of R4 spanned

by[2,2,1,0]and[-2, 2,0, 1]is[8, 0, 2, -2].
Chain of Thoughts Program of Thoughts

'Question: Let rectangle R = [1, 2.5] * [1, 2]. Calculate the Riemann Sum S_{3,2} for \int \int_{R}
Ixy dﬁi for the integral, using the lower-left verte)i of rectangles as sample points. B

i

The given region R is a rectangle from [1, 2.5] in x and [1, 2] in ;def SOIero: o . .
y. We are asked to find the Riemann sum S_{3,2} which means : : # Define the limits of integration
we will partition the interval in x into 3 equal subintervals and iox_min, x_max=1,2.5
the interval in y into 2 equal subintervals. ioy_min,y_max=1,2
)))] : # Define the number of rectangles in each direction
The width of each subinterval in x, Ax, is (2.5-1) /3 =0.5. The num_rectangles_x = 3

height of each subinterval iny, Ay, is (2-1) /2 =0.5.

Now, we are sampling from the lower left corner of each
subrectangle. This means we'll be evaluating our function f(x, y)
= xy at the points (x, y) where x ranges over {1, 1.5, 2}, and y

num_rectangles_y = 2
Calculate the width and height of each rectangle
delta_x = (x_max - x_min) / num_rectangles_x

ranges over {1, 1.5}, delta_y = (y_max - y_min) / num_rectangles_y
i #Initialize the Riemann Sum

The Riemann sum is given by: i riemann_sum =0

S {3,2}=MAx* Ay * Zf(x_i, y_j) i # Iterate through the rectangles

where the sum % is over all pairs (x_i, y_j) from the lower left Y foriin range(num_rectangles_x):

vertices of the subrectangles.

for j in range(num_rectangles_y):
=05*05*[(11+11.54+ 151 +1.51.5) + (1.51 +1.51.5 + 21 + J ge(r gles_y)

Galculate the lower-left vertex of the rectangle

21.5)] i -
=0.25*[3.5 + 5] X = X_min + i * delta_x
=025*85=2.125 y=y_min +j* delta_y
Calculate the value of the function at
So, the Riemann sum S_{3,2} for the double integral over R of fxy=x*y
f(x, y) = xy with respect to area, using the lower-left vertex of # Add the contribution to the Riemann Sum
each subrectangle as the sample point, is 2.125. riemann_sum += f_xy * delta_x * delta_y

return riemann_sum
Chain of Thoughts o Program of Thoughts Q

Figure 8: Case Study of GPT-4 generation with both prompting strategies.

Dhabi, United Arab Emirates. Association for Com- Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,

putational Linguistics. Henrique Ponde de Oliveira Pinto, Jared Kaplan,

Harri Edwards, Yuri Burda, Nicholas Joseph, Greg

Jiagi Chen, Jianheng Tang, Jinghui Qin, Xiaodan Liang, Brockman, et al. 2021b. Evaluating large lan-

Lingbo Liu, Eric Xing, and Liang Lin. 2021a. Geoqa: guage models trained on code. arXiv preprint
A geometric question answering benchmark towards arXiv:2107.03374.

multimodal numerical reasoning. In Findings of
the Association for Computational Linguistics: ACL- Wenhu Chen, Xueguang Ma, Xinyi Wang, and
IJCNLP 2021, pages 513-523. William W Cohen. 2022b. Program of thoughts

prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena
Shah, Tana Borova, Dylan Langdon, Reema Moussa,
Matt Beane, Ting-Hao Huang, Bryan R Routledge,
et al. 2021c. Finga: A dataset of numerical reasoning
over financial data. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3697-3711.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Andrew Drozdov, Nathanael Schirli, Ekin Akyiirek,
Nathan Scales, Xinying Song, Xinyun Chen, Olivier
Bousquet, and Denny Zhou. 2022. Compositional
semantic parsing with large language models. arXiv
preprint arXiv:2209.15003.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2022. Pal: Program-aided language
models. arXiv preprint arXiv:2211.10435.

2023. Palm 2 technical

Google. report.

https://ai.google/static/documents/palm2techreport.pdf.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. Conference
on Neural Information Processing Systems.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. arXiv
preprint arXiv:2203.15556.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization.
In EMNLP, pages 523-533.

Wolfram Research, Inc. Mathematica, Version 13.2.
Champaign, IL, 2022.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances
in Neural Information Processing Systems.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equa-
tions. Transactions of the Association for Computa-
tional Linguistics, 3:585-597.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. Mawps:
A math word problem repository. In Proceedings of
the 2016 conference of the north american chapter of
the association for computational linguistics: human
language technologies, pages 1152—1157.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven
Hoi. 2022. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding
and generation. In International Conference on Ma-
chine Learning, pages 12888-12900. PMLR.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 158—167.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual instruction tuning. arXiv preprint
arXiv:2304.08485.

Pan Lu, Ran Gong, Shibiao Jiang, Liang Qiu, Siyuan
Huang, Xiaodan Liang, and Song-Chun Zhu. 2021.
Inter-GPS: Interpretable geometry problem solving
with formal language and symbolic reasoning. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 6774—
6786, Online. Association for Computational Lin-
guistics.

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter
Clark, and Ashwin Kalyan. 2022. Learn to explain:
Multimodal reasoning via thought chains for science
question answering. Advances in Neural Information
Processing Systems, 35:2507-2521.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and
Jianfeng Gao. 2023a. Chameleon: Plug-and-play
compositional reasoning with large language models.
arXiv preprint arXiv:2304.09842.

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu,
Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark,
and Ashwin Kalyan. 2023b. Dynamic prompt learn-
ing via policy gradient for semi-structured mathe-
matical reasoning. In International Conference on
Learning Representations (ICLR).

https://www.wolfram.com/mathematica
https://doi.org/10.18653/v1/2021.acl-long.528
https://doi.org/10.18653/v1/2021.acl-long.528

Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A diverse corpus for evaluating and developing
english math word problem solvers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 975-984.

Swaroop Mishra, Matthew Finlayson, Pan Lu, Leonard
Tang, Sean Welleck, Chitta Baral, Tanmay Rajpuro-
hit, Oyvind Tafjord, Ashish Sabharwal, Peter Clark,
and Ashwin Kalyan. 2022. Lila: A unified bench-
mark for mathematical reasoning. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing (EMNLP).

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis.
arXiv preprint arXiv:2203.13474.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, et al. 2021. Show your work: Scratch-
pads for intermediate computation with language
models. In Deep Learning for Code Workshop.

OpenAl. 2023. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730-27744.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021a. Are nlp models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080-2094.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021b. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080-2094, Online.
Association for Computational Linguistics.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from
natural language supervision. In International confer-
ence on machine learning, pages 8748-8763. PMLR.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, et al. 2021. Scaling language models:
Methods, analysis & insights from training gopher.
arXiv preprint arXiv:2112.11446.

Subhro Roy and Dan Roth. 2015. Solving general arith-
metic word problems. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1743-1752.

David Saxton, Edward Grefenstette, Felix Hill, and
Pushmeet Kohli. 2019. Analysing mathematical rea-
soning abilities of neural models. arXiv preprint
arXiv:1904.01557.

Minjoon Seo, Hannaneh Hajishirzi, Ali Farhadi, Oren
Etzioni, and Clint Malcolm. 2015. Solving geome-
try problems: Combining text and diagram interpre-
tation. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 1466-1476, Lisbon, Portugal. Association for
Computational Linguistics.

Alex Tamkin, Kunal Handa, Avash Shrestha, and Noah
Goodman. 2022. Task ambiguity in humans and
language models. arXiv preprint arXiv:2212.10711.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas
Scialom, Anthony Hartshorn, Elvis Saravia, Andrew
Poulton, Viktor Kerkez, and Robert Stojnic. 2022.
Galactica: A large language model for science. arXiv
preprint arXiv:2211.09085.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Shyam Upadhyay and Ming-Wei Chang. 2015. Draw:
A challenging and diverse algebra word problem set.
Technical report, Citeseer.

Shyam Upadhyay and Ming-Wei Chang. 2017. An-
notating derivations: A new evaluation strategy and
dataset for algebra word problems. In Proceedings
of the 15th Conference of the European Chapter of
the Association for Computational Linguistics: Vol-
ume 1, Long Papers, pages 494-504, Valencia, Spain.
Association for Computational Linguistics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, and Denny Zhou. 2022. Self-consistency im-
proves chain of thought reasoning in language mod-
els. arXiv preprint arXiv:2203.11171.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 conference on empirical meth-
ods in natural language processing, pages 845-854.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare,
Nghi DQ Bui, Junnan Li, and Steven CH Hoi. 2023.
Codet5+: Open code large language models for
code understanding and generation. arXiv preprint
arXiv:2305.07922.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.

https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/D15-1171
https://doi.org/10.18653/v1/D15-1171
https://doi.org/10.18653/v1/D15-1171
https://aclanthology.org/E17-1047
https://aclanthology.org/E17-1047
https://aclanthology.org/E17-1047

2022a. Emergent abilities of large language models.
Transactions on Machine Learning Research.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed H Chi, Quoc V Le, Denny Zhou,
et al. 2022b. Chain-of-thought prompting elicits rea-
soning in large language models. In Advances in
Neural Information Processing Systems.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. 2022. GIm-130b:
An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo
Li, and Yu Li. 2023. Progressive-hint prompting
improves reasoning in large language models. arXiv
preprint arXiv:2304.09797.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Olivier Bousquet, Quoc Le, and Ed Chi. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and
Tat-Seng Chua. 2021. Tat-qa: A question answering
benchmark on a hybrid of tabular and textual content
in finance. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3277-3287.

