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Abstract

Geometry problem solving is a well-recognized
testbed for evaluating the high-level multi-
modal reasoning capability of deep models.
In most existing works, two main geometry
problems: calculation and proving, are usually
treated as two specific tasks, hindering a deep
model to unify its reasoning capability on mul-
tiple math tasks. However, in essence, these
two tasks have similar problem representations
and overlapped math knowledge which can im-
prove the understanding and reasoning ability
of a deep model on both two tasks. Therefore,
we construct a large-scale Unified Geometry
problem benchmark, UniGeo, which contains
4,998 calculation problems and 9,543 prov-
ing problems. Each proving problem is an-
notated with a multi-step proof with reasons
and mathematical expressions. The proof can
be easily reformulated as a proving sequence
that shares the same formats with the anno-
tated program sequence for calculation prob-
lems. Naturally, we also present a unified multi-
task Geometric Transformer framework, Geo-
former, to tackle calculation and proving prob-
lems simultaneously in the form of sequence
generation, which finally shows the reasoning
ability can be improved on both two tasks by
unifying formulation. Furthermore, we propose
a Mathematical Expression Pretraining (MEP)
method that aims to predict the mathematical
expressions in the problem solution, thus im-
proving the Geoformer model. Experiments on
the UniGeo demonstrate that our proposed Geo-
former obtains state-of-the-art performance by
outperforming task-specific model NGS with
over 5.6% and 3.2% accuracies on calculation
and proving problems, respectively.1

1 Introduction

Achieving logical reasoning abilities is still chal-
lenging for neural networks, especially in some

∗Corresponding author.
1Data and code: https://github.com/chen-judge/UniGeo
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AB is the diameter of 
circle O and point C 
is on the circle. 
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Figure 1: The pipeline of pretraining and unified train-
ing of our proposed Geoformer. We pretrain the model
by predicting the mathematical expression extracted
from the solution of calculation problems. After that,
we consider the calculation and proving as downstream
tasks, and feed both types of data to Geoformer for
unified training.

mathematical reasoning tasks, such as math word
problems (MWP) (Zhang et al., 2020a,b; Qin et al.,
2020, 2021; Yang et al., 2022a,b; Mishra et al.,
2022a,b; Lu et al., 2022), mathematical theorem
proving (Li et al., 2020; Welleck et al., 2021),
etc. Recently, geometry problem solving (Sachan
et al., 2020; Chen et al., 2021; Lu et al., 2021a;
Zhang et al., 2022) has also attracted much at-
tention in the NLP community, which requires
comprehensive reasoning capabilities in parsing
multimodal information and utilizing mathemat-
ical knowledge. Specifically, geometry problem
solving mainly contains two categories: calcula-
tion and proving. For calculation problems, both
recent GeoQA (Chen et al., 2021) and Inter-GPS
(Lu et al., 2021a) propose multiple-choice geom-
etry problem benchmarks annotated with specific
symbolic programs or logic forms, which inspire
the neural networks’ potential ability to give an in-

https://github.com/chen-judge/UniGeo


Given VX=UW and TW=UX. U is the midpoint 
of TV. Complete the proof that T= VUX. 

Proof Reasons Expressions

Step1 Midpoint TU = UV

Step2 SSS TUW UVX

Step3 CPCTC T = VUX

Midpoint | TU | = | UV | SSS | TUW | | UVX | CPCTC | T | = | VUX
Proving Sequence:

A. 30 B. 40 C. 50 D. 60
Answer: C.50
Problem Solution: 

OA = OC OCA= OAC=25 BOC=2 OAC=50
Annotated Program Sequence: 

Equal | N0 | Double | V0

Calculation Problem Proving Problem
AB is the diameter of circle O and 
point C is on the circle. If OCA 
= 25 (N0), then BOC=().

Figure 2: We unify geometry logical reasoning in the proposed UniGeo dataset. Except for the calculation problem
provided in the GeoQA benchmark (Chen et al., 2021), we collect some proving problems (right) which contain
clear mathematical expressions and corresponding reasons that can be reformulated as proving sequence to unify
with the program sequence in the calculation problems.

terpretable prediction. On the subject of geometry
proving, the existing work (Chou et al., 1996, 2000;
Gan et al., 2019) mainly relies on well-designed
proving systems and forward chaining search meth-
ods rather than neural-based models. Therefore,
there is still a huge gap between the works on these
two types of geometry problems, which are usually
considered as two areas.

Recently, much work (Raffel et al., 2020; Cho
et al., 2021; Lu et al., 2021b; Li et al., 2022;
Alayrac et al., 2022) has presented unified models
for various vision-language reasoning and gener-
ation tasks since the underlying visual/linguistic
understanding and reasoning abilities are largely
common. Inspired by the mainstream progress, we
suppose that a unified model for geometry problem
solving is also necessary. To begin, calculation and
proving tasks share some fundamental skills and
knowledge in geometric reasoning. Therefore, it
is desirable to explore the general understanding
and reasoning ability of the unified neural network
in the math domain. Besides, the unified model
doesn’t need auxiliary models to determine whether
the problem is a calculation or proving problem and
further select task-specific models, where cumula-
tive errors can be introduced.

To this end, a framework addressing geometry
problems uniformly at both the data level and the
model level is valuable and expected. However, the
existing proving data is small-scale and annotated
in an incompatible format. To achieve our goal,
we collect lots of geometry proving data from an
online education website and build a single multi-
task benchmark, UniGeo, in which the provided
proof can be reformulated as a causal proving se-
quence so that the calculation and proving prob-
lems are unified in data format, as shown in Figure

2. Our UniGeo contains 4,998 calculation prob-
lems and 9,543 proving problems, which can verify
the high-level geometry logical reasoning capabili-
ties in neural models.

Taking advantage of the unified formulation of
two geometry tasks, we further propose a novel
unified geometric transformer (Geoformer) which
is able to handle geometry calculation and proof
reasoning simultaneously and outperforms the task-
specialized models on both tasks. To learn an effi-
cient Geoformer for unifying geometry logical rea-
soning, we also propose a mathematical reasoning
pre-training method named Mathematical Expres-
sion Pretraining (MEP), which is based on the prob-
lem solution, since the solution prediction can serve
as a universal task for all math problems. Specifi-
cally, we extract the mathematical expressions and
remove the redundant text description in the solu-
tion for MEP. These expressions are rich in implicit
math knowledge and can also be formulated as
the solution sequence target. We further fine-tune
the unified Geoformer to predict program/proving
sequences for calculation and proving problems
simultaneously. The pipeline of pretraining and
unified training is demonstrated in Figure 1. Ex-
periments on the UniGeo benchmark show that
our proposed Geoformer achieves state-of-the-art
performance, getting 5.6% and 3.2% accuracy im-
provements on calculation and proving problems,
respectively, compared to the task-specific model
NGS (Chen et al., 2021).

Our contributions can be summarized as follows:

• We construct a unified geometry reasoning
benchmark, named UniGeo, which contains
both calculation and proving problems.

• The proving problems in UniGeo are anno-



tated with proof steps, in which the mathe-
matical expressions can be reformulated as
proving sequences to match the program se-
quences in calculation problems.

• We propose a unified geometric transformer
framework, which is pretrained by predicting
mathematical expressions in the solution and
then fine-tuned on calculation and proving
problems simultaneously.

2 Related Work

Geometry Problem Solving Several geometry
datasets (Seo et al., 2014, 2015; Sachan et al., 2017;
Alvin et al., 2017; Sachan and Xing, 2017) have
been constructed to facilitate the development of ge-
ometry problem solving. However, these previous
geometry datasets are either not publicly available
or built up with small sizes, which limit the devel-
opment of relevant research. Besides, the latest
datasets (Lu et al., 2021a; Chen et al., 2021; Cao
and Xiao, 2022) only focus on the arithmetic calcu-
lation skill for geometry problem solving and fail
to take into account comprehensive geometry rea-
soning abilities like logical proving. For instance,
GeoQA (Chen et al., 2021) provides 4,998 calcula-
tion problems annotated with a symbolic program
sequence that corresponds to the problem solution.
Instead, we propose a new large-scale geometry
dataset, which covers a wide range of sub-tasks and
reasoning skills including calculation and proving.
To the best of our knowledge, we are the first work
to collect so many geometry proving problems for
training the neural network and provide detailed
sequence annotations corresponding to the proofs
which can be unified with calculation problems and
facilitate model learning.

Geometry Theorem Proving Theorem proving
in the geometry domain (Gelernter et al., 1960;
Chou et al., 1996, 2000; Ye et al., 2011; Yu et al.,
2019a; Gan et al., 2019) is a long-standing artifi-
cial intelligence task. For example, (Chou et al.,
1996) developed an initial automated geometry the-
orem proving system by designing a set of full-
angle-based rules. Similarly, the expert system
JGEX (Ye et al., 2011) is proposed to prove full-
angle geometry problems with a well-defined de-
ductive database. More recently, some pioneering
efforts (Li et al., 2020; Tafjord et al., 2020; Welleck
et al., 2021) have been attempted to learn automatic
proofing systems from large-scale natural language
corpus or mathematical propositions. However,

how to achieve an automatic neural-based prover in
the geometry domain is still less studied. Therefore,
we propose a unified Geoformer that can generate
proof given a geometry diagram and statements
from scratch.

3 Unifying Geometry Reasoning

In this work, we aim to unify geometry logical
reasoning for both calculation and proving prob-
lems. To this end, we first construct a geometry
proving dataset that requires multiple reasoning
abilities while solving the problems. Furthermore,
we reformulate the proof as sequence form which is
consistent with the program sequence in the calcu-
lation problems of the current GeoQA (Chen et al.,
2021).

3.1 UniGeo Benchmark

3.1.1 Data Collection
We discover an online education website, IXL2,
which contains various types of geometry prob-
lems from high school textbooks. We utilize some
crawler scripts in Python to crawl a large amount
of proving data from this educational website au-
tomatically. After selecting the proving problem
carefully, we ask some well-trained workers to
check the quality of collected data, such as ensur-
ing that each problem has complete diagram and
clear proof. All the calculation problems are in-
herited from the GeoQA dataset, containing 4,998
calculation problems with program sequence anno-
tation which corresponds to problem solution and
can be predicted by generative models. We also
organize five well-trained college students to trans-
late the problems in GeoQA dataset from Chinese
to English so that the language of the two types
of geometry data is consistent. Finally, we unify
these newly collected proving data with the GeoQA
dataset and construct our UniGeo benchmark to be
a testbed for unified geometry logical reasoning.

3.1.2 Data Analysis
In this section, we mainly analyze the newly col-
lected proving problems in the UniGeo benchmark.
We collect a total of 9,543 proving problems where
each data contains a colored geometry diagram, a
description text, and the proof with reasons and
expressions. There are totally 37 categories of rea-
sons, which are explanations for each step of the

2https://www.ixl.com/math/geometry
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Midpoint SSS CPCTCTU = TUW UV UVX T = VUX

R19 R30 R6E5 = E4E2 E1 E3 = E0

Proving Sequence

Target Sequence

Elements: TU ,  UV  ,  TUW  ,  UVX   ,  T   ,  VUX

Elements: VUX(E0)  ,  UVX(E1) ,  UV(E2) ,  T(E3) ,  TUW(E4)  ,  TU(E5) 

Randomly Shuffle

Figure 3: Illustration of converting proving sequence to the target sequence which is considered as training target
for the proving problem.

All Train Val Test

All 9,543 6,675 1,421 1,447

Parallel 443 311 61 71
Triangle 3,035 2,134 452 449
Quadrangle 1,704 1,170 260 274
Congruent 2,808 1,974 414 420
Similarity 1,553 1,086 234 233

Table 1: Statistics for the proving problems in UniGeo.
There are five reasoning sub-tasks for geometry proving.

proof, including the reasoning skills or the geome-
try theorems applied. And the expression is a con-
crete mathematical proof of each step, consisting
of operator and geometry element. For example, in
Figure 2, the reason Midpoint represents using the
definition of midpoint to get an expression TU =
UV. SSS stands for "side, side, side" and means that
we have two congruent triangles with all three sides
equal. CPCTC stands for "corresponding parts of
congruent triangles are congruent", therefore, we
get the final expression ∠T = ∠V UX .

As shown in Table 1, the proving data is divided
into train, validation, and test splits with a ratio
of 7:1.5:1.5. The dataset consists of five sub-tasks
which also represent five different topics of proving
problems: parallel, triangle, quadrangle, congruent,
and similarity. The distribution of these types of
proving problems can be viewed in Table 1. In the
experiments, we also provide the detailed perfor-
mance of models on these sub-tasks.

3.2 Reformulate Expressions in the Proof

Based on the collected proving data, we aim to re-
formulate the mathematical expressions as target
sequences to unify with the program sequence in
calculation problems, thus achieving a reasonable

unified geometry reasoning task. The reasons and
expressions in the collected proof are still textual,
thus we first translate them into a sequence format.
As shown in Figure 3, we organize the proof as
the proving sequence which contains three types of
tokens: reasons R (e.g., Midpoint, SSS, CPCTC),
operators OP (e.g., =,∼=), and geometry elements
E (e.g., TU, △TUW , etc.). The reasons are in-
serted in front of the proof expressions (including
operators and elements) to form the proving se-
quence.

Moreover, we reformulate the proving sequence
as the final target sequence which can be predicted
by generative models. As mentioned in Section
3.1.2, we have summarized all the reasons into a
set, thus, each reason can be considered as a token
Ri, where i is the index in the predefined reasons
set. For the operators, we just reserve their origi-
nal representation as the tokens. As for geometry
elements, however, we first fetch all the geometry
elements in the proving sequence, and construct the
list of geometry elements. To increase the diversity
of proving problems, we randomly shuffle these
elements to form a new elements list and convert
each element in the proving sequence to a token Ei,
where i corresponds to its position in the shuffled
geometry elements list. Benefiting from this, we
produce diverse target sequences. Even if similar
topics may exist in the training and testing sets, the
target sequence tends to be completely different,
avoiding that the model simply learns some typical
proof patterns. Note that the shuffled elements list
will also be added as text to the end of the problem
text and fed into the model while training.

In summary, by reformulating the expression-
based proof as the target sequence, we define a
multimodal high-level reasoning task. This scheme
is adopted for the following reasons. First, it sim-
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Equal N0 Double V0

O A = O C …Solution Sequence:

Program Sequence:

Pretraining & Task Target…

ResNet

Diagram Embedding

B is the <MASK> …A of
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Figure 4: An illustration of our proposed geometric transformer. We concatenate the embeddings of text and
diagram, which are fed into the transformer encoder-decoder to generate target sequence. For pretraining, the
targets are source text and the mathematical expressions extracted from the solution. And during the fine-tuning
stage, the training objective is program sequence or proving sequence. Note that we achieve unified fine-tuning
for calculation and proving problems simultaneously. For brevity, this illustration shows only one example of a
calculation problem.

plifies the task representation with a clear sequence
prediction. Second, although the target token is
reduced to a smaller space, it is still challenging for
models to understand the correspondence between
inputs (including problem diagram, text, and the
elements to be selected) and target token. Third,
by applying the expression reformulation, we unify
the proving problem with the calculation problem
to construct the UniGeo benchmark, which requires
multiple reasoning capabilities.

4 Unified Geometric Transformer

4.1 Overview

Although the NGS model (Chen et al., 2021) is de-
signed for geometry calculation problems, its per-
formance degrades about 5% after unified training
on the UniGeo (Table 2). Therefore, based on the
VL-T5 (Cho et al., 2021) model which is capable
of handling multiple multimodal tasks uniformly,
we propose a geometric transformer (Geoformer)
that can conduct comprehensive reasoning on both
calculation and proving problems. Figure 4 demon-
strates the structure of the model, which consists
of a bidirectional multimodal encoder and an au-
toregressive text decoder. In order to promote the
performance of Geoformer, we first pretrain it us-
ing the solution provided in calculation problems,
as well as applying masked LM task to enhance
the representation of the text encoder. At the fine-
tuning stage, we train the model end-to-end with
calculation and proving problems simultaneously

to acquire stronger comprehensive reasoning ability
on geometry problem solving, rather than optimiz-
ing the model on two tasks separately.

4.2 Unified Pretraining

4.2.1 Mathematical Expression Pretraining
Different from the popular pretraining paradigm
that fine-tuning models with large-scale natural cor-
pus, geometry problems are mainly described by
some mathematical languages and also solved by
mathematical knowledge, which is far from natural
language. Therefore, we propose Mathematical Ex-
pression Pretraining (MEP) to pretrain our unified
Geoformer with the mathematical corpus.

Formulating Solution Sequence The GeoQA
dataset provides a problem solution that explains
the idea and process of solving the problem in the
form of text description. Similar to formulating the
proof expression into the sequence, mathematical
expression in the solution can also be reformulated
into solution sequence for prediction. We remove
the redundant text description in the solution and
only utilize the mathematical expressions for pre-
training. Specifically, we only reserve the geometry
elements entities, operation symbols, and numbers,
all of which involve abundant geometry mathemat-
ical knowledge and can be organized as solution
sequence. In addition, the number in solution is
replaced with a token NSi where i represents the
order that the number appears in the solution. Dif-
ferent from taking word-level tokenization for nat-



ural text description, we adopt char-level tokeniza-
tion for geometry elements since some geometry
elements share common characters with specific ge-
ometric meanings. For example, both line OC and
∠OCA contain points O and C, but this relation
will disappear if OC and ∠OCA are considered as
basic tokens. In summary, the formulated solution
sequence has rich mathematical knowledge and can
be learned by models to enhance the understanding
of mathematical reasoning process.

4.2.2 Masked Language Modeling
We also explore applying the Masked Language
Modeling (MLM) task for solving geometry prob-
lems. Following (Cho et al., 2021), we mask 30%
of input text tokens with <mask> tokens. Then the
model is trained to recover the masked text in a
unified text generation manner.

4.3 Fine-tuning Unified Geoformer
We combine the above two pretraining tasks to
pretrain the unified geometric transformer. After
that, fine-tuning the unified Geoformer is straight-
forward since we have unified the outputs of all
downstream tasks into a sequence format. We load
the weights from the pretrained model and keep the
weights of the diagram encoder fixed, following
the NGS model (Chen et al., 2021). Then, we opti-
mize the rest parts of the model end-to-end using a
mixture of calculation and proving data.

4.4 Unified Training Objective
All of the pre-training and fine-tuning tasks in this
work are unified in the form of text generation, thus
sharing the same training objective. The generation
loss Lg is the negative log-likelihood (NLL) of the
target sequence:

Lg(θ) =
1

L

L∑
t=1

logPt(yt|x, y1, ..., yt−1;θ),

where θ are the parameters of the entire Geoformer
architecture except for the diagram encoder, x is
the input of both problem text and the extracted
diagram feature, yt are the target tokens, Pt is the
distribution of the next token, L is the length of
sequence.

5 Experiments

5.1 Experimental Settings
Datasets We conduct experiments on the Uni-
Geo, containing GeoQA (Chen et al., 2021) dataset
and our newly collected proving problems. The

GeoQA dataset involves 4,998 calculation prob-
lems with corresponding annotated program se-
quence, which illustrates the calculating process
of the given problems and is considered as train-
ing and testing target. Besides, the GeoQA also
provides the problem solution which is not utilized
by previous works but is used for pretraining in
this work. We also construct a proving dataset with
9,543 problems, which are split to train, validate,
and test subsets in a ratio of 7.0: 1.5: 1.5. We fur-
ther define five sub-tasks: Parallel, Triangle, Quad-
rangle, Congruent, and Similarity, to provide the
detailed performance of models. To unify geometry
reasoning, we also translate the Chinese calcula-
tion problems into English, so that the language
of calculation and proving problems are consis-
tent. We also have considered the Inter-GPS dataset
(Lu et al., 2021a). However, it mainly adopts the
rule-based parser to translate the problem text into
formal language and doesn’t have the sequence
annotation which can be unified with the proving
sequence in our work. Therefore, the Inter-GPS
dataset is not compatible with unified training on
both calculation and proving problems, and we
mainly conduct experiments on GeoQA and newly
collected proving data.

Evaluation Metrics For the calculation prob-
lems, we follow the evaluation metrics in GeoQA,
i,e, the accuracy of solving all the problems and two
main subsets: angle and length problems. Follow-
ing the IsarStep (Li et al., 2020), we adopt top-1
accuracy and top-10 accuracy for evaluating the
proofs. Top-K accuracy computes the percentage
where the ground-truth proof is among the top K
generated proving sequence. Since the models pos-
sibly generate alternative valid proving sequences
that are not completely consistent with the pro-
vided proof, we mainly use more reasonable top-10
accuracy for evaluating the proving problems.

Implementation Details We fill the diagram
with a white background to make it equal in length
and width, and resize it to 224×224, which is fur-
ther split into 49 patches with a size of 32×32
each. Then we apply ResNet (He et al., 2016) to
extract patch features which are further mapped
into flattened 1D sequences to construct final dia-
gram embeddings. Our Geoformer is implemented
by PyTorch (Paszke et al., 2017). We use the
Adam (Loshchilov and Hutter, 2017) optimizer
with β1 = 0.9 and β2 = 0.999. The learning



Calculation (%) Proving (%)

Methods Data All Angle Length All Par. Tri. Qua. Con. Sim.

FiLM (Perez et al., 2017) Calculation 31.7 34.0 29.7 - - - - - -
RN (Santoro et al., 2017) Calculation 38.0 42.8 32.5 - - - - - -
MCAN (Yu et al., 2019b) Calculation 39.7 45.0 34.6 - - - - - -
BERT (Devlin et al., 2018) Calculation 54.7 65.8 42.1 - - - - - -
NGS (Chen et al., 2021) Calculation 56.9 69.8 39.2 - - - - - -
Geoformer (Ours) Calculation 60.3 71.5 49.1 - - - - - -

BERT Proving - - - 48.0 15.5 48.1 28.5 49.5 77.6
NGS Proving - - - 53.2 13.2 56.6 29.8 57.1 79.4
Geoformer (Ours) Proving - - - 55.7 19.4 68.3 20.4 60.6 72.5

BERT UniGeo 52.0 63.1 39.2 48.1 15.4 48.0 31.7 49.5 75.1
NGS UniGeo 51.9 63.6 38.8 47.4 11.2 46.9 31.3 48.3 77.6
Geoformer (Ours) UniGeo 60.9 72.2 48.8 55.8 18.1 68.8 20.4 60.3 73.3
Geoformer + Pretraining (Ours) UniGeo 62.5 75.5 48.8 56.4 19.4 69.4 20.4 60.3 75.0

Table 2: The accuracy comparison of various methods and baseline models under different data settings. The newly
collected proving problems provide five sub-tasks (as defined in Table 1) for evaluation.

rate is 2e−4, the batch size is set to 10, and models
are trained within 100 epochs. We train our unified
Geoformer on randomly shuffled calculation prob-
lems and proving problems simultaneously. For
pretraining, we maintain the settings as mentioned
above, but replace the training label with the solu-
tion sequence and set the learning rate to 5e−4.

5.2 Experimental Results

Table 2 demonstrates the results of our methods
and baselines on the calculation and proving prob-
lems. We divided the experiments into three parts
according to the data used by the model, i.e., the
calculation problems from the GeoQA dataset, our
newly collected proving problems, and the unified
benchmark of both calculation and proving prob-
lems. A detailed analysis is shown below.

Baselines FiLM (Perez et al., 2017), RN (San-
toro et al., 2017), MCAN (Yu et al., 2019b) are
three multimodal models with strong cross-modal
reasoning abilities that well address the composi-
tional language and elementary visual reasoning
benchmark, CLEVR (Johnson et al., 2017). They
can predict the possibly correct option in calcula-
tion problems by using visual question answering.
However, this approach does not work well in ge-
ometry problem solving since the MCAN achieves
the answer accuracy of only 39.7%. The “BERT"
model here refers to "BERT2Prog + Diagram" in
GeoQA that BERT and ResNet are utilized to en-
code text and diagram data separately. Finally, the

Methods Data Top-1 Top-10

NGS UniGeo 17.4 47.4
NGS + Pretraining UniGeo 19.2 49.6
Geoformer UniGeo 50.2 55.8
Geoformer + Pretraining UniGeo 51.3 56.4

Table 3: Performance comparison on proving problems
with different evaluation metrics.

features of these two modalities are fused to guide
the generation of target sequence. The NGS model
is specially designed for solving the calculation
problems in the GeoQA dataset. We also re-run the
experiment on the English version of the GeoQA
dataset using the NGS model and obtain a perfor-
mance of 56.9%.

The performance comparison on proving prob-
lems We conduct some experiments on the col-
lected proving problems. In Table 2, Par, Tri,
Qua, Con, Sim represent five sub-tasks respec-
tively. When using proving data only, the NGS
model achieves a total performance of 53.2%. The
proposed Geoformer obtains a top-10 accuracy of
55.7% on proving problems. There is a huge differ-
ence in the performance of sub-tasks due to the dif-
ficulty of various geometric reasoning skills varies
greatly. The accuracy rate of proving parallel re-
lated problems is only 19.4%, while proving simi-
larity is relatively simple, which can reach an accu-
racy of 72.5%. Table 3 also provides the results of
top-1 accuracy metric. When applying pretraining



In ABC, D is a point on 
AC, if DBC= A, BC=3 
(N0), AC=6 (N1), then the 
length of CD is ().
Solution:

DBC= A, C= C, BCD ACB,
CD/BC=BC/AC CD/3=3/6 CD=1.5

Proportion | N0 | N1 | N0

Add | N0 | N1 | Proportion | N0 | V0 | N1

Unified Geoformer & Ground Truth:

Specialized Geoformer:

QR ST and QT RS . Complete 
the proof that RS QT

Alternate Interior Angles Theorem | RQS | | QST | 
Alternate Interior Angles Theorem | QSR | | SQT | 
Reflexive Property of Congruence | QS | | QS |
ASA | QRS | | STQ | CPCTC | RS | | QT

Alternate Interior Angles Theorem | RQS | | SQT | 
Alternate Interior Angles Theorem | QSR | | RS | 
Reflexive Property of Congruence | QS | | QS |

Ground Truth:

Unified Geoformer:

Figure 5: The left calculation case shows a situation where a unified Geoformer works better than a task-specialized
Geoformer since the related similar triangle knowledge also exists in proving problems. Through multi-task learning,
the model is enhanced on the understanding of similar triangle problems. In the failure proving case on the right,
the Geoformer model outputs some incorrect proof (red) and misses part of the proof (the bold in ground truth).

on the unified NGS and Geoformer models, we can
get a 19.2% and 51.3% top-1 accuracy respectively.

The performance of unified training Our mo-
tivation is to unify the geometry logical reasoning
and we have already unified the data format. Thus,
apart from training on calculation and proving prob-
lems separately, we design the unified Geoformer,
which is trained with the mixture of both types of
problems. It can be observed that the NGS model
suffers a severe performance decline when trained
on both tasks simultaneously, in which the accuracy
of calculation and proving problems decrease 5.0%
and 5.8% respectively. However, our proposed Ge-
oformer avoids this phenomenon and obtains an
impressive performance on two tasks simultane-
ously. Specifically, the unified Geoformer achieves
60.9% and 55.8% accuracy on calculation and prov-
ing problems, outperforming two task-specific Ge-
oformer models on two geometry tasks. The rea-
soning ability can be enhanced on both two tasks
with the unified formulation.

The effectiveness of pretraining To further pro-
mote the performance of unified Geoformer, We
extract a large number of mathematical expressions
from the solution of calculation problem as the
pre-training target. These expressions are rich in
implicit math knowledge and can also be formu-
lated as solution sequence. Applying the pretrain-
ing method, the Geoformer+Pretraining model is
further improved to 62.5% and 56.4% accuracy
on calculation and proving problems respectively,
obtaining 5.6% and 3.2% accuracy improvement
compared to task-specialized NGS models, which
achieves state-of-the-art performance on UniGeo

Methods Calculation Proving

Geoformer 60.9 55.8
Geoformer + MLM 61.3 56.2
Geoformer + MEP 61.8 56.1
Geoformer + MLM + MEP 62.5 56.4

Table 4: Ablation study for different pretraining meth-
ods. MLM and MEP represent masked language model-
ing and mathematical expression pretraining.

benchmark.

5.3 Ablation Study

We explore the effectiveness of different pretrain-
ing settings for the ablation study. In Table 4, we
experiment unified Geoformer with two pretrain-
ing ways: masked language modeling (MLM) and
mathematical expression pretraining (MEP). Us-
ing only MLM, the performance of the Geoformer
model does not change significantly. When MEP is
used alone, the performance of the model on calcu-
lation problems is improved obviously. When using
both pre-training methods, the model makes an im-
provement significantly on both types of problems,
obtaining the highest 62.5% and 56.4% on calcula-
tion and proving problems, respectively. Thus, we
apply this setting to the training of Geoformer.

5.4 Case Study

As shown in Figure 5, we conduct a case study
for discussing the ability and limitation of our pro-
posed unified Geoformer. For the left case, the
unified Geoformer works well on the calculation
problem, benefiting from the multi-task learning
framework. As we can see in the problem solution,



it first utilizes the knowledge of similar triangles
to get △BCD ∼ △ACB, and then lists a propor-
tional relation to get CD = 3/6 ∗ 3 = 1.5. Com-
pared to task-specialized Geoformer that predicts
a wrong program sequence, the prediction made
by our unified Geoformer is completely consistent
with ground truth. This is probably because the
unified model acquires a stronger understanding
of similar triangle knowledge after simultaneously
training on proving problems (containing many
problems proving similar triangles). Therefore,
multi-task learning is beneficial in geometry rea-
soning. We also select a typical failure case. The
unified Geoformer chooses two wrong geometry
elements for the proof steps and also fails to give
the last two critical proof steps. The geometry prob-
lems are still challenging for current neural-based
approaches.

6 Conclusion

Recently, geometry problem solving has attracted
much attention in AI research while previous works
mainly focus on geometry calculation problems.
It is significant to explore the unified reasoning
abilities of neural models on multiple math tasks.
Therefore, we integrate geometry calculation and
proving problems, and construct a unified geom-
etry benchmark, UniGeo, containing 9,543 prov-
ing problems with proof reasons and mathematical
expressions that can be reformulated as proving
sequence to unify with the program sequence of
calculation problems. We also propose a unified
Geoformer that can address calculation and proving
problems simultaneously. Besides, a mathematical
expression pretraining way is proposed to promote
the performance of the unified Geoformer. Experi-
ments show that our Geoformer can well address
two challenging geometry tasks with a single set
of model weights, outperforming task-specialized
models and obtaining state-of-the-art performance.

Limitations

To explore the logical reasoning ability of neural
network models in the geometry domain, we pro-
pose a unified method for two major and similar
tasks (calculation and proving) in geometry prob-
lems. Although we have achieved state-of-the-art
performance on these two tasks simultaneously, the
unified Geoformer still has some limitations. First,
the answer accuracy of the neural-network-based
approaches is still far from the real-world applica-

tion when addressing such complex tasks which
require high-level reasoning ability. Second, the
data construction of such mathematical logical rea-
soning tasks requires a heavy manual collection
and annotation process, which also limits the type
and difficulty of geometry problems, thereby lead-
ing to the failure of neural network models to learn
and process more sophisticated cases.
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